15.已知函數(shù)$f(x)=\sqrt{2}sin(\frac{x}{2}+\frac{π}{4})+1$
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[0,2π],求f(x)的值域.

分析 (1)利用正弦函數(shù)的單調(diào)性,求得f(x)的單調(diào)遞增區(qū)間.
(2)利用正弦函數(shù)的定義域和值域,求得f(x)的值域.

解答 解:(1)對于函數(shù)$f(x)=\sqrt{2}sin(\frac{x}{2}+\frac{π}{4})+1$,令2kπ-$\frac{π}{2}$≤$\frac{x}{2}$+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得4kπ-$\frac{3π}{2}$≤x≤4kπ+$\frac{π}{2}$,
可得f(x)的單調(diào)遞增區(qū)間為[4kπ-$\frac{3π}{2}$,4kπ+$\frac{π}{2}$],k∈Z.
(2)當x∈[0,2π],$\frac{x}{2}$+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],∴sin($\frac{x}{2}$+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],∴$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{4}$)∈[-1,$\sqrt{2}$],
∴f(x)∈[0,$\sqrt{2}$+1].

點評 本題主要考查正弦函數(shù)的單調(diào)性,正弦函數(shù)的定義域和值域,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知在($\frac{x}{2}$$-\frac{1}{\root{5}{x}}$)n的展開式中,第6項為常數(shù)項,則n=(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知i為虛數(shù)單位,復數(shù)z1=1-i,z2=1+ai,若z1•z2是純虛數(shù),則實數(shù)a的值為( 。
A.1B.-1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow$=(2cosωx+sinωx,cosωx),x∈R,ω>0,記$f(x)=\overrightarrow a•\overrightarrow b$,且該函數(shù)的最小正周期是$\frac{π}{4}$.
(1)求ω的值;
(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{3}$|$\overrightarrow{a}$|,且($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$為( 。
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知p是r的充分條件,而r是q的必要條件,同時又是s的充分條件,q是s的必要條件,試判斷:
(1)s是p的什么條件?
(2)p是q的什么條件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(0,1),且離心率為$\frac{{\sqrt{3}}}{2}$
(Ⅰ)求橢圓C 的方程;
(Ⅱ)直線l1,l2 都過點H(0,m)(m≠0),分別與x 軸相交于D,E,其中D 為OE 的中點(O 為坐標原點).直線l1 與圓x2+y2=$\frac{1}{2}$ 相切,直線l2 與橢圓C 相交于M,N,
求證:△OMN 的面積為定值;
(Ⅲ)在(Ⅱ)的條件下,設P 為M,N 中點,Q 是橢圓上的點,$\overrightarrow{OP}=λ\overrightarrow{OQ}$ (λ>0 ),求λ 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知全集U={a1,a2,a3,a4},集合A是集合U的恰有兩個元素的子集,且滿足下列三個條件:①若a1∈A,則a2∈A;②若a3∉A,則a2∉A;③若a3∈A,則a4∉A,則集合A={a2,a3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知隨機變量X服從正態(tài)分布N(1,σ2),且P(0≤X≤1)=0.35,則P(X>2)=0.15.

查看答案和解析>>

同步練習冊答案