分析 (1)由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(2)由題意可得,a=$\frac{5π}{12}$,b=f(0),計算求得結(jié)果,再利用正弦函數(shù)的單調(diào)性求得函數(shù)的減區(qū)間.
(3)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,求得m的最小值.
解答 解:(1)根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象,可得A=2,
$\frac{3}{4}$•$\frac{2π}{ω}$=$\frac{5π}{12}$+$\frac{π}{3}$,∴ω=2.
再根據(jù)五點法作圖可得2•$\frac{5π}{12}$+φ=π,可得φ=$\frac{π}{6}$,故f(x)=2sin(2x+$\frac{π}{6}$).
(2)由題意可得,a=$\frac{5π}{12}$-T=$\frac{5π}{12}$-$\frac{2π}{2}$=-$\frac{7π}{12}$,b=2sin(0+$\frac{π}{6}$)=1.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
故函數(shù)的減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
(3)若將f(x)的圖象向左平移m(m>0)個單位后,
得到g(x)=2sin(2x+2m+$\frac{π}{6}$)的圖象
根據(jù)g(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱,可得$\frac{2π}{3}$+2m+$\frac{π}{6}$=kπ+$\frac{π}{2}$,即 m=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
故要求m的最小值為$\frac{π}{3}$.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,正弦函數(shù)的單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com