分析 (Ⅰ)求出導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,求出a,c,即可求f(x)的解析式;
(Ⅱ)對?x1∈[-3,0],?x2∈[0,+∞)恒有f(x1)≥g(x2)成立,等價于f(x)min≥g(x)max,即可求b的取值范圍.
解答 解:(Ⅰ)∵f(x)=x3+ax2-4x+c,
∴f′(x)=3x2+2ax-4,∴f′(1)=2a-1=3,∴a=2
將切點(diǎn)(1,4)代入函數(shù)f(x),可得c=5,
∴f(x)=x3+2x2-4x+5;
(Ⅱ)令f′(x)=(x+2)(3x-2)>0,可得x<-2,f′(x)>0,-2<x<0,f′(x)<0,
∵f(-3)=8,f(0)=5,
∴?x1∈[-3,0],f(x)min=f(0)=5,
∵g(x)=lnx+(b-1)x+4,∴g′(x)=$\frac{1}{x}$+b-1,
b-1≥0,b≥1,g′(x)>0,g(x)在(0,+∞)上單調(diào)遞增,沒有最大值,不合題意,舍去;
b-1<0,b<1,令g′(x)=0,x=$\frac{1}{1-b}$,
∴x∈(0,$\frac{1}{1-b}$),g′(x)>0,∴g(x)單調(diào)遞增,
x∈($\frac{1}{1-b}$,+∞),g′(x)<0,g(x)單調(diào)遞減,
∴gmax(x)=ln$\frac{1}{1-b}$+3,
∴5≥ln$\frac{1}{1-b}$+3,
∴b≤1-$\frac{1}{{e}^{2}}$.
點(diǎn)評 本題考查導(dǎo)數(shù)知識的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查恒成立問題,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{7}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{24}$,0) | B. | ($\frac{5π}{24}$,0) | C. | ($\frac{11π}{24}$,0) | D. | ($\frac{11π}{12}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 15 | C. | 20 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $9\sqrt{2}$ | B. | $\frac{{27\sqrt{2}}}{2}$ | C. | $\frac{{9\sqrt{2}}}{2}$ | D. | $27\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com