【題目】已知m,n是兩條不同的直線,,是兩個不同的平面,給出下列命題:

,,,則;

,,則;

,,,則;

,,,則;

其中正確命題的序號是( 。

A.①②B.①③C.①④D.②④

【答案】C

【解析】

在①中,由面面垂直的判定定理得;在②中,n有可能與,都不垂直;在③中,有可能相交但不垂直;在④中,由線面平行的性質定理得

已知mn是兩條不同的直線,,是兩個不同的平面,得:

在①中,若,,則由面面垂直的判定定理得,故①正確;

在②中,若,,則n有可能與,都不垂直,故②錯誤;

在③中,若,,則相交或平行,即有可能相交但不垂直,故③錯誤;

在④中,若,,則由線面平行的性質定理得,故④正確.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1底面四邊形ABCD為菱形,A1AAB2,∠ABC,E,F分別是BCA1C的中點

(1)求異面直線EF,AD所成角的余弦值;

(2)點M在線段A1D上, .若CM∥平面AEF,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓()的右焦點為F,左頂點為A,離心率,且經過圓O:的圓心.過點F作不與坐標軸重合的直線和該橢圓交于MN兩點,且直線分別與直線交于PQ兩點.

1)求橢圓的方程;

2)證明:為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合表示具有下列性質的函數(shù)的集合:①的定義域為;②對任意,都有

1)若函數(shù),證明是奇函數(shù);并當,,求,的值;

2)設函數(shù)a為常數(shù))是奇函數(shù),判斷是否屬于,并說明理由;

3)在(2)的條件下,若,討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程是為參數(shù)),把曲線橫坐標縮短為原來的,縱坐標縮短為原來的一半,得到曲線,直線的普通方程是,以坐標原點為極點,軸正半軸為極軸建立極坐標系;

(1)求直線的極坐標方程和曲線的普通方程;

(2)記射線交于點,與交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國慶70周年慶典磅礴而又歡快的場景,仍歷歷在目.已知慶典中某省的游行花車需要用到某類花卉,而該類花卉有甲、乙兩個品種,花車的設計團隊對這兩個品種進行了檢測.現(xiàn)從兩個品種中各抽測了10株的高度,得到如下莖葉圖.下列描述正確的是(

A.甲品種的平均高度大于乙品種的平均高度,且甲品種比乙品種長的整齊

B.甲品種的平均高度大于乙品種的平均高度,但乙品種比甲品種長的整齊

C.乙品種的平均高度大于甲品種的平均高度,且乙品種比甲品種長的整齊

D.乙品種的平均高度大于甲品種的平均高度,但甲品種比乙品種長的整齊

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)在曲線上任取一點,連接,在射線上取,使,點軌跡的極坐標方程;

2)在曲線上任取一點,在曲線上任取一點,的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由郭帆執(zhí)導吳京主演的電影《流浪地球》于201925日起在中國內地上映,影片引發(fā)了觀影熱潮,預計《流浪地球》票房收入47億人民幣,超過《紅海行動》成為中國影史票房亞軍,僅次于《戰(zhàn)狼2.某電影院為了解該影院觀看《流浪地球》的觀眾的年齡構成情況,隨機抽取了40名觀眾,將他們的年齡分成7段:,,,,得到如圖所示的頻率分布直方圖.

1)試求這40名觀眾年齡的平均數(shù)、中位數(shù)、眾數(shù);

2)(i)若從樣本中年齡在50歲以上的觀眾中任取3名贈送VIP貴賓觀影卡,求這3名觀眾至少有1人年齡不低于70歲的概率;

ii)該電影院決定采用抽獎方式來提升觀影人數(shù),將《流浪地球》電影票票價提高20元,并允許購買電影票的觀眾抽獎3次,中獎1次、2次、3次分別獎現(xiàn)金元、元,.設觀眾每次中獎的概率均為,若要使抽獎方案對電影院有利,則最高可定為多少元?(結果精確到個位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:區(qū)間,,的長度均為,若不等式的解集是互不相交區(qū)間的并集,設該不等式的解集中所有區(qū)間的長度之和為,則( )

A. 時,B. 時,

C. 時,D. 時,

查看答案和解析>>

同步練習冊答案