8.下圖中的圖形經(jīng)過折疊不能圍成棱柱的是( 。
A.B.C.D.

分析 D中的側(cè)面展開圖在圍成棱柱時底面是四邊形,側(cè)面只有三個面,故D圖形經(jīng)過折疊不能圍成棱柱.

解答 解:由棱柱的側(cè)面展開圖的性質(zhì)得:
A中的側(cè)面展開圖能圍成一個四棱柱,
B中的側(cè)面展開圖能圍成一個五棱柱,
C中的側(cè)面展開圖能圍成一個三棱柱,
D中的側(cè)面展開圖在圍成棱柱時底面是四邊形,側(cè)面只有三個面,
故D圖形經(jīng)過折疊不能圍成棱柱.
故選:D.

點評 本題考查棱柱的側(cè)面展開圖的性質(zhì)的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意棱柱的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.集合A={1,2,0},B={1,3},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合M=$\left\{{x\left|{y=ln({x^2}-3x-4)}\right.}\right\},N=\left\{{y\left|{y=\sqrt{{x^2}-1}}\right.}\right\}$,則M∩N=( 。
A.(-∞,-1)B.(0,+∞)C.(4,+∞)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校為了解學(xué)生一次考試后數(shù)學(xué)、物理兩個科目的成績情況,從中隨機抽取了25位考
生的成績進行統(tǒng)計分析.25位考生的數(shù)學(xué)成績已經(jīng)統(tǒng)計在莖葉圖中,物理成績?nèi)缦拢?br />90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(1)請根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績統(tǒng)計如圖1;
(2)請根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學(xué)成績的頻數(shù)分布表及數(shù)學(xué)成績的頻率分布直方圖如圖2;
數(shù)學(xué)成績的頻數(shù)分布表如下表:
數(shù)學(xué)成績分組[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
頻數(shù)       
(3)設(shè)上述樣本中第i位考生的數(shù)學(xué)、物理成績分別為xi,yi(i=1,2,3,…,25).通過對樣本數(shù)據(jù)進行初步處理發(fā)現(xiàn):數(shù)學(xué)、物理成績具有線性相關(guān)關(guān)系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(x1-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)=5524,$\frac{4698}{5524}$≈0.85
求y關(guān)于x的線性回歸方程,并據(jù)此預(yù)測當某考生的數(shù)學(xué)成績?yōu)?00分時,該考生的物理成績(精確到1分).
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,ABCD為空間四邊形,點E,F(xiàn)分別是AB,BC的中點,點G,H分別在CD,AD上,且DH=$\frac{1}{3}$AD,DG=$\frac{1}{3}$CD.
求:(1)判斷EFGH的形狀;
(2)證明直線EH,F(xiàn)G必相交于一點,且這個交點在直線BD上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=px3+x2+4x(常數(shù)p≠0)在x=x1處取得極大值M.
(1)當M=-4時,求p的值;
(2)記f(x)=px3+x2+4x在x∈[-5,5]上的最小值為N,若N≥-5,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\frac{sinx}{x}$,在下列四個命題中:
①f(x)是奇函數(shù);
②對定義域內(nèi)任意x,f(x)<1恒成立;
③當$x=\frac{3π}{2}$時,f(x)取極小值;
④f(2)>f(3),
正確的是:②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過點P$(1,\frac{{\sqrt{3}}}{3})$作圓x2+y2=1的切線,切點分別為A、B,直線AB恰好經(jīng)過橢圓C的右焦點和上頂點.
(Ⅰ)求直線AB的方程;
(Ⅱ) ①求橢圓C的標準方程;
②若直線l:y=kx+m與橢圓C相交于M,N兩點(M,N不是左右頂點),橢圓的右頂點為D,且滿足$\overrightarrow{DM}•\overrightarrow{DN}=0$,試判斷直線l是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是(  )
A.f(x)=$\frac{2}{x}$B.f(x)=log2xC.f(x)=($\frac{1}{2}$)xD.f(x)=-x2+2

查看答案和解析>>

同步練習(xí)冊答案