分析 (1)由已知等式,利用正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式化簡(jiǎn)可得tanB=$\sqrt{3}$,從而可求cosB,利用余弦定理即可解得c的值.
(2)由降冪公式,三角形內(nèi)角和定理,誘導(dǎo)公式,兩角差的正弦函數(shù)公式化簡(jiǎn)等式可得2sin(2A-$\frac{π}{3}$)-1=0,及$\frac{π}{6}$$<A<\frac{π}{2}$,可得A的值.
解答 (本小題滿分12分)
解:(1)∵a=bcosC+$\frac{\sqrt{3}}{3}$csinB,
∴sinA=sinBcosC+$\frac{\sqrt{3}}{3}$sinCsinB=sin(B+C)=sinBcosC+cosBsinC,
∴cosBsinC=$\frac{\sqrt{3}}{3}$sinCsinB,
∴tanB=$\sqrt{3}$,
∴∠B=$\frac{π}{3}$.
∵b2=a2+c2-2accosB,
∴c2-2c-3=0,
∴c=3.(6分)
(2)∵B=$\frac{π}{3}$.
∴$\sqrt{3}$sin(2A-$\frac{π}{6}$)-2sin2(C-$\frac{π}{12}$)
=$\sqrt{3}$sin(2A-$\frac{π}{6}$)-1+cos(2C-$\frac{π}{6}$)
=$\sqrt{3}$sin(2A-$\frac{π}{6}$)+cos($\frac{4π}{3}$-2A-$\frac{π}{6}$)-1
=$\sqrt{3}$sin(2A-$\frac{π}{6}$)-cos(2A-$\frac{π}{6}$)-1
=2sin(2A-$\frac{π}{3}$)-1,(10分)
∴由2sin(2A-$\frac{π}{3}$)-1=0,及$\frac{π}{6}$$<A<\frac{π}{2}$,可得A=$\frac{π}{4}$. (12分)
點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理,兩角和與差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,降冪公式,誘導(dǎo)公式,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 31 | C. | 62 | D. | 63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10082+2(21008-1) | B. | 1007×1008+2(21008-1) | ||
C. | 10082+$\frac{4}{3}$(41008-1) | D. | 1007×1008+$\frac{4}{3}$(41008-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com