精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在多面體ABCDEF中,ABCD是正方形,BF平面ABCDDE平面ABCD,BF=DE,點M為棱AE的中點.

1)求證:平面BMD平面EFC;

2)若AB=1BF=2,求三棱錐A-CEF的體積.

【答案】(1)見解析;

(2)

【解析】

1)設ACBD交于點N,則NAC的中點,可得MNEC.由線面平行的判定,可得MN∥平面EFC.再由BF⊥平面ABCD,DE⊥平面ABCD,且BF=DE,可得BDEF為平行四邊形,得到BDEF.由面面平行的判定,可得平面BDM∥平面EFC;

2)連接ENFN.在正方形ABCD中,ACBD,再由BF⊥平面ABCD,可得BFAC.從而得到AC⊥平面BDEF,然后代入棱錐體積公式求解.

(1)證明:設ACBD交于點N,則NAC的中點,而M為AE中點

MNEC

MN平面EFCEC平面EFC

MN平面EFC

BF平面ABCDDE平面ABCD,且BF=DE,

BFDE,BF=DE,

BDEF為平行四邊形,BDEF

BD平面EFCEF平面EFC,

BD平面EFC

MNBD=N

平面BDM平面EFC;

2)解:連接ENFN.在正方形ABCD中,ACBD

BF平面ABCD,BFAC

BFBD=B,

AC平面BDEF,且垂足為N,

,

三棱錐A-CEF的體積為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點是拋物線的焦點,是拋物線在第一象限內的點,且

(I) 點的坐標;

(II)為圓心的動圓與軸分別交于兩點,延長分別交拋物線兩點;

①求直線的斜率;

②延長軸于點,若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)討論函數的單調性;

(2)當a=1時,若關于的不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的長軸與短軸之和為6,橢圓上任一點到兩焦點, 的距離之和為4.

(1)求橢圓的標準方程;

(2)若直線 與橢圓交于, 兩點, , 在橢圓上,且, 兩點關于直線對稱,問:是否存在實數,使,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,

得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.


優(yōu)秀

非優(yōu)秀

合計

甲班

10



乙班


30


合計



110

1)請完成上面的列聯表;

2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為成績與班級有關系

3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從211進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:。


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知點C是圓心為O半徑為1的半圓弧上從點A數起的第一個三等分點,是直徑,,直線平面.

1)證明:;

2)若M的中點,求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列,其前項和為,滿足,,其中,,.

⑴若,),求證:數列是等比數列;

⑵若數列是等比數列,求的值;

⑶若,且,求證:數列是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某互聯網公司為了確定下一季度的前期廣告投入計劃,收集了近期前期廣告投入量(單位:萬元)和收益(單位:萬元)的數據。對這些數據作了初步處理,得到了下面的散點圖(共個數據點)及一些統(tǒng)計量的值.為了進一步了解廣告投入量對收益的影響,公司三位員工①②③對歷史數據進行分析,查閱大量資料,分別提出了三個回歸方程模型:

根據, ,參考數據: .

(1)根據散點圖判斷,哪一位員工提出的模型不適合用來描述之間的關系?簡要說明理由.

(2)根據(1)的判斷結果及表中數據,在余下兩個模型中分別建立收益關于投入量的關系,并從數據相關性的角度考慮,在余下兩位員工提出的回歸模型中,哪一個是最優(yōu)模型(即更適宜作為收益關于投入量的回歸方程)?說明理由;

附:對于一組數據, ,…, ,其回歸直線的斜率、截距的最小二乘估計以及相關系數分別為:

, ,

其中越接近于,說明變量的線性相關程度越好.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據調查:人類在能源利用與森林砍伐中使CO2濃度增加.據測,2015年,2016年,2017年大氣中的CO2濃度分別比2014年增加了1個單位,3個單位,6個單位.若用一個函數模擬每年CO2濃度增加的單位數y與年份增加數x的關系,模擬函數可選用二次函數(其中為常數)或函數 (其中a,b,c為常數),又知2018年大氣中的CO2濃度比2014年增加了16.5個單位,請問用以上哪個函數作模擬函數較好?

查看答案和解析>>

同步練習冊答案