(本小題滿分12分)
已知函數(shù),,設(shè)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)圖像上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;
(Ⅲ)是否存在實(shí)數(shù)m,使得函數(shù)的圖像與函數(shù)的圖像恰有四個(gè)不同的交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說明理由。

(1) 的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為
(2)
(3) 當(dāng)時(shí),的圖象與的圖象恰有四個(gè)不同的交點(diǎn)

解析試題分析:解:(I),
,由,∴上單調(diào)遞增。
,∴上單調(diào)遞減。
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。
(II),
恒成立
當(dāng)時(shí),取得最大值。
,∴
(III)若的圖象與的圖象恰有四個(gè)不同得交點(diǎn),即有四個(gè)不同的根,亦即有四個(gè)不同的根。
,

當(dāng)x變化時(shí),、的變化情況如下表:

x




的符號(hào)




的單調(diào)性




由表格知:,
畫出草圖和驗(yàn)證可知,當(dāng)時(shí),
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(I)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(II)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)若上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若的極值點(diǎn),求上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知a為實(shí)數(shù),
(1)求導(dǎo)數(shù);
(2)若,求在[-2,2] 上的最大值和最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)是實(shí)數(shù)集R上的奇函數(shù),且在R上為增函數(shù)。
(Ⅰ)求的值;
(Ⅱ)求恒成立時(shí)的實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知曲線f (x ) =" a" x 2 +2在x=1處的切線與2x-y+1=0平行
(1)求f (x )的解析式 
(2)求由曲線y="f" (x ) 與,,所圍成的平面圖形的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)(為自然對數(shù)的底數(shù)),).
(1)證明:;
(2)當(dāng)時(shí),比較的大小,并說明理由;
(3)證明:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間和極值點(diǎn);
(Ⅱ)若函數(shù)有極值點(diǎn),記過點(diǎn)與原點(diǎn)的直線斜率為。是否存在使?若存在,求出值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對于都有成立,試求的取值范圍;
(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案