3.定義在R上的偶函數(shù)f(x),當(dāng)0≤x≤$\frac{π}{2}$時(shí),f(x)=x3sinx,設(shè)a=f(sin$\frac{π}{3}$),b=f(sin2),c=f(sin3),則a,b,c的大小關(guān)系為(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

分析 由題意可得,定義在R上的偶函數(shù)f(x),當(dāng)0≤x≤$\frac{π}{2}$時(shí),f(x)=x3sinx是增函數(shù),再由sin2=sin(π-2),sin3=sin(π-3),$π-3<\frac{π}{3}<π-2$,利用函數(shù)的單調(diào)性可得a,b,c的大小關(guān)系.

解答 解:定義在R上的偶函數(shù)f(x),當(dāng)0≤x≤$\frac{π}{2}$時(shí),f(x)=x3sinx是增函數(shù).
由于sin2=sin(π-2),sin3=sin(π-3),$π-3<\frac{π}{3}<π-2$,
∴sin(π-3)<sin$\frac{π}{3}$<sin(π-2),
∴b>a>c,
故選C.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,誘導(dǎo)公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知直線(6m2+3m-3)x+(m2+m)y-4m+1=0與直線x-2y+6=0的夾角為arctan3,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=$\frac{3}{sinx+2}$的值域?yàn)椋ā 。?table class="qanwser">A.(1,3)B.(1,3]C.[1,3)D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.四棱柱ABCD-A1B1C1D1中,∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD,則CC1與BD所成角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD
(Ⅰ)證明:平面PBD⊥平面PAC
(Ⅱ)設(shè)AP=1,AD=$\sqrt{3}$,∠CBA=60°,求A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)函數(shù)f(x)=|sinx|+|cosx|,x∈R,則下列結(jié)論正確的是①②(寫出所有正確結(jié)論的編號(hào)).
①f(x)為偶函數(shù)    
②f(x)的最大值為$\sqrt{2}$    
③f(x)的最小值為0
④f($\frac{9π}{10}$)>f($\frac{π}{9}$)    
⑤f(x)的最小正周期為π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.以x軸為對(duì)稱軸,以原點(diǎn)為頂點(diǎn)且過(guò)圓x2+y2-2x+6y+9=0的圓心的拋物線的方程是( 。
A.y=3x2或y=-3x2B.y=3x2C.y2=-9x或y=3x2D.y2=9x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow$=-2,則cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{1}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)的定義域?yàn)镽*,且滿足條件f(4)=1,對(duì)于任意${x_1},{x_2}∈{R^*}$,有f(x1•x2)=f(x1)+f(x2),且函數(shù)f(x)在R*上為增函數(shù).
(1)求f(1)的值;
(2)如果f(3x+1)+f(2x-6)≤3,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案