【題目】已知函數(shù)f(x)=x+,且此函數(shù)的圖象過點(1,5).
(1)求實數(shù)m的值并判斷f(x)的奇偶性;
(2)判斷函數(shù)f(x)在[2,+∞)上的單調(diào)性,證明你的結論.
【答案】(1)m=4,奇函數(shù);(2)f(x)在[2,+∞)上單調(diào)遞增,證明見解析.
【解析】
試題(1)函數(shù)圖象過點(1,5)將此點代入函數(shù)關系式求出m的值即可,因為函數(shù)定義域關于原點對稱,需要判斷函數(shù)是否滿足關系式或者.滿足前者為偶函數(shù),滿足后者為奇函數(shù),否則不具有奇偶性.此題也可以將看做與兩個函數(shù)的和,由的奇偶性判斷出的奇偶性.(2)利用函數(shù)單調(diào)性的定義式:區(qū)間上的時,的正負來確定函數(shù)在區(qū)間上的單調(diào)性.
試題解析:(1)(1)∵f(x)過點(1,5),
∴1+m=5m=4.
對于f(x)=x+,∵x≠0,
∴f(x)的定義域為(-∞,0)∪(0,+∞),關于原點對稱.
∴f(-x)=-x+=-f(x).
∴f(x)為奇函數(shù).
另解:,,定義域均與定義域相同,因為為奇函數(shù),因此可以得出也為奇函數(shù).
(2)證明:設x1,x2∈[2,+∞)且x1<x2,
則f(x1)-f(x2)=x1+-x2-=(x1-x2)+=.
∵x1,x2∈[2,+∞)且x1<x2,
∴x1-x2<0,x1x2>4,x1x2>0.
∴f(x1)-f(x2)<0.
∴f(x)在[2,+∞)上單調(diào)遞增.
科目:高中數(shù)學 來源: 題型:
【題目】中國高鐵的快速發(fā)展給群眾出行帶來巨大便利,極大促進了區(qū)域經(jīng)濟社會發(fā)展.已知某條高鐵線路通車后,發(fā)車時間間隔(單位:分鐘)滿足,經(jīng)測算,高鐵的載客量與發(fā)車時間間隔相關:當時高鐵為滿載狀態(tài),載客量為人;當時,載客量會在滿載基礎上減少,減少的人數(shù)與成正比,且發(fā)車時間間隔為分鐘時的載客量為人.記發(fā)車間隔為分鐘時,高鐵載客量為.
求的表達式;
若該線路發(fā)車時間間隔為分鐘時的凈收益(元),當發(fā)車時間間隔為多少時,單位時間的凈收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.
(2)解關于t不等式f(x-t)+f(x2-2t)≥0對一切實數(shù)x都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線直角坐標方程;
(2)設為曲線上的動點,求點到上點的距離的最小值,并求此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學將收集到的六組數(shù)據(jù)制作成散點圖如圖所示,并得到其回歸直線的方程為,計算其相關系數(shù)為,相關指數(shù)為.經(jīng)過分析確定點為“離群點”,把它去掉后,再利用剩下的5組數(shù)據(jù)計算得到回歸直線的方程為,相關系數(shù)為,相關指數(shù)為.以下結論中,不正確的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線:,直線:.
(1)求曲線和直線的直角坐標方程;
(2)設點的直角坐標為,直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于實數(shù)a,b,定義運算“*”:a*b=,設f (x)=(x-4)*,若關于x的方程|f (x)-m|=1(m∈R)恰有四個互不相等的實數(shù)根,則實數(shù)m的取值范圍是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com