【題目】已知函數(shù)f(x)=.

1)若函數(shù)f(x)的圖像中相鄰兩條對稱軸間的距離不小于,求的取值范圍;

2)若函數(shù)f(x)的最小正周期為π,且當(dāng)x時,f(x)的最大值是,求函數(shù)f(x)的最小值,并說明如何由函數(shù)y=sin2x的圖象變換得到函數(shù)y=f(x)的圖象.

【答案】1;(2)最小值為的圖象向右平移個單位即可得到的圖象

【解析】

1)先利用二倍角公式將化為,由題意,,解不等式即可;

2)由最小正周期為可得,由x時,的最大值為可得,進(jìn)一步可得的解析式及最小值,再由平移變換即可得到答案.

1,

由題意,,即,解得.

2)因為函數(shù)f(x)的最小正周期為π,所以,所以,

,當(dāng)x時,,

,所以,解得

所以,.

因為,所以只需將的圖象向右平移個單

位即可得到的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】同時拋擲兩枚骰子,并記下二者向上的點(diǎn)數(shù),求:

二者點(diǎn)數(shù)相同的概率;

兩數(shù)之積為奇數(shù)的概率;

二者的數(shù)字之和不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為

為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)

方程是.

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),求兩點(diǎn)間的距離的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .若曲線在點(diǎn)處的切線方程為為自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形,平面平面 , 的中點(diǎn).

(1)求證: 平面;

(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應(yīng)量)如表所示:

產(chǎn)品
資源

甲產(chǎn)品
(每噸)

乙產(chǎn)品
(每噸)

資源限額
(每天)

煤(t

9

4

360

電力(kw·h

4

5

200

勞力(個)

3

10

300

利潤(萬元)

7

12


問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點(diǎn)的交點(diǎn)為,且拋物線在點(diǎn)處的切線與軸交于點(diǎn),拋物線在點(diǎn)處的切線與軸交于點(diǎn),與軸交于點(diǎn).

(1)若直線與拋物線交于點(diǎn), ,且,求拋物線的方程;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,若存在常數(shù),使對一切實(shí)數(shù)均成立,則稱為“倍約束函數(shù)”現(xiàn)給出下列函數(shù):;;;是定義在實(shí)數(shù)集上的奇函數(shù),且對一切均有其中是“倍約束函數(shù)”的序號是  

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店統(tǒng)計了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店

第一天售出但第二天未售出的商品有______種;

這三天售出的商品最少有_______.

查看答案和解析>>

同步練習(xí)冊答案