【題目】某中學(xué)有教師400人,其中高中教師240人.為了了解該校教師每天課外鍛煉時(shí)間,現(xiàn)利用分層抽樣的方法從該校教師中隨機(jī)抽取了100名教師進(jìn)行調(diào)查,統(tǒng)計(jì)其每天課外鍛煉時(shí)間(所有教師每天課外鍛煉時(shí)間均在分鐘內(nèi)),將統(tǒng)計(jì)數(shù)據(jù)按,,,…,分成6組,制成頻率分布直方圖如下:

假設(shè)每位教師每天課外鍛煉時(shí)間相互獨(dú)立,并稱每天鍛煉時(shí)間小于20分鐘為缺乏鍛煉.

1)試估計(jì)本校教師中缺乏鍛煉的人數(shù);

2)若從參與調(diào)查,且每天課外鍛煉時(shí)間在內(nèi)的該校教師中任取2人,求至少有1名初中教師被選中的概率.

【答案】1人.(2

【解析】

1)先求得樣本中初中、高中教師缺乏鍛煉的頻率,由此計(jì)算出該校教師中缺乏鍛煉的人數(shù).利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.

2)利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.

1)由題意可得樣本中初中教師缺乏鍛煉的頻率為,

樣本中高中教師缺乏鍛煉的頻率為,

估計(jì)該校教師中缺乏鍛煉的人數(shù)為.

2)由題意可參與調(diào)查初中教師每天課外鍛煉時(shí)間在的人數(shù)為,記為;

高中教師每天課外鍛煉時(shí)間在的人數(shù)為,記為,,.

從這5人中選取2人的情況有,,,,,,,

,,,共10種;

其中符合條件的情況有,,,,,,,共7種.

故所求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PAPDE,F分別為AD,PB的中點(diǎn).求證:

1EF//平面PCD;

2)平面PAB平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司A產(chǎn)品生產(chǎn)的投入成本x(單位:萬(wàn)元)與產(chǎn)品銷售收入y(單位:十萬(wàn)元)存在較好的線性關(guān)系,下表記錄了該公司最近8次該產(chǎn)品的相關(guān)數(shù)據(jù),且根據(jù)這8組數(shù)據(jù)計(jì)算得到y關(guān)于x的線性回歸方程為

x(萬(wàn)元)

6

7

8

11

12

14

17

21

y(十萬(wàn)元)

1.2

1.5

1.7

2

2.2

2.4

2.6

2.9

1)求的值(結(jié)果精確到0.0001),并估計(jì)公司A產(chǎn)品投入成本30萬(wàn)元后產(chǎn)品的銷售收入(單位:十萬(wàn)元).

2)該公司B產(chǎn)品生產(chǎn)的投入成本u(單位:萬(wàn)元)與產(chǎn)品銷售收入v(單位:十萬(wàn)元)也存在較好的線性關(guān)系,且v關(guān)于u的線性回歸方程為

i)估計(jì)該公司B產(chǎn)品投入成本30萬(wàn)元后的毛利率(毛利率);

ii)判斷該公司A,B兩個(gè)產(chǎn)品都投入成本30萬(wàn)元后,哪個(gè)產(chǎn)品的毛利率更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的歸家之一,某市為了制訂合理的節(jié)水方案,對(duì)家庭用水情況進(jìn)行了抽樣調(diào)查,獲得了某年100個(gè)家庭的月均用水量(單位:)的數(shù)據(jù),將這些數(shù)據(jù)按照,,,,,分成9組,制成了如圖所示的頻率分布直方圖.

1)求圖中的值,若該市有30萬(wàn)個(gè)家庭,試估計(jì)全市月均用水量不低于的家庭數(shù);

2)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,試估計(jì)全市家庭月均用水量的平均數(shù);

3)現(xiàn)從月均用水量在,的家庭中,先按照分層抽樣的方法抽取9個(gè)家庭,再?gòu)倪@9家庭中抽取4個(gè)家庭,記這4個(gè)家庭中月均用水量在中的數(shù)量為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的極值點(diǎn)的個(gè)數(shù);

2)若3個(gè)極值點(diǎn),(其中),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)新型冠狀病毒肺炎疫情期間,以網(wǎng)絡(luò)購(gòu)物和網(wǎng)上服務(wù)所代表的新興消費(fèi)展現(xiàn)出了強(qiáng)大的生命力,新興消費(fèi)將成為我國(guó)消費(fèi)增長(zhǎng)的新動(dòng)能.某市為了了解本地居民在20202月至3月兩個(gè)月網(wǎng)絡(luò)購(gòu)物消費(fèi)情況,在網(wǎng)上隨機(jī)對(duì)1000人做了問(wèn)卷調(diào)查,得如下頻數(shù)分布表:

網(wǎng)購(gòu)消費(fèi)情況(元)

頻數(shù)

300

400

180

60

60

1)作出這些數(shù)據(jù)的頻率分布直方圖,并估計(jì)本市居民此期間網(wǎng)絡(luò)購(gòu)物的消費(fèi)平均值;

2)在調(diào)查問(wèn)卷中有一項(xiàng)是填寫(xiě)本人年齡,為研究網(wǎng)購(gòu)金額和網(wǎng)購(gòu)人年齡的關(guān)系,以網(wǎng)購(gòu)金額是否超過(guò)4000元為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000人中抽取200人,得到如下列聯(lián)表,請(qǐng)將表補(bǔ)充完整并根據(jù)列聯(lián)表判斷,在此期間是否有95%的把握認(rèn)為網(wǎng)購(gòu)金額與網(wǎng)購(gòu)人年齡有關(guān).

網(wǎng)購(gòu)不超過(guò)4000

網(wǎng)購(gòu)超過(guò)4000

總計(jì)

40歲以上

75

100

40歲以下(含40歲)

總計(jì)

200

參考公式和數(shù)據(jù):.(其中為樣本容量)

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)x[1,e]時(shí),fx)的最小值為_____;設(shè)gx)=[fx]2fx+a若函數(shù)gx)有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線,曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程;

2)射線的極坐標(biāo)方程為,若分別與交于異于極點(diǎn)的兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的虛軸的一個(gè)頂點(diǎn)為,左頂點(diǎn)為,雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)為線段上的動(dòng)點(diǎn),當(dāng)取得最小值和最大值時(shí),的面積分別為,,若,則雙曲線的離心率為( ).

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案