【題目】已知直線過點,圓:.
(1)當直線與圓相切時,求直線的一般方程;
(2)若直線與圓相交,且弦長為,求直線的一般方程.
【答案】(1)或(2);
【解析】
(1)把圓的一般式化為標準方程,討論直線斜率存在或不存在時是否與圓相切的情況。當不存在時,可直接判斷相切;當斜率存在時,利用點斜式表示出直線方程,結(jié)合點到直線的距離即可求得斜率k,進而得到直線方程。
(2)根據(jù)弦長與半徑,求得圓心到直線的距離;利用點斜式設(shè)出直線方程,根據(jù)點到直線距離即可求得斜率k,進而得到直線方程。
解:(1)將圓的一般方程化為標準方程得,
所以圓的圓心為,半徑為1,
因為直線過點,所以當直線的斜率不存在時,直線與圓相切,
此時直線的方程為;
當直線的斜率存在時,設(shè)斜率為,則直線的方程為,
化為一般式為。
因為直線與圓相切,所以,得,
此時直線的方程為
綜上所述,直線方程為或
(2)因為弦長為,所以圓心到直線的距離為,
此時直線的斜率一定存在,設(shè)直線的方程為,圓心到直線的距離,
由,得,
所以
當時,直線的一般方程為;
當時,直線的一般方程為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底, )的導函數(shù)為.
(1)當時,討論函數(shù)在區(qū)間上零點的個數(shù);
(2)設(shè)點, 是函數(shù)圖象上兩點,若對任意的,割線的斜率都大于,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路和,在點處交匯,該商業(yè)區(qū)為圓心角,半徑3的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路,與,分別交于,要求與扇形弧相切,切點不在,上.
(1)設(shè)試用表示新建公路的長度,求出滿足的關(guān)系式,并寫出的范圍;
(2)設(shè),試用表示新建公路的長度,并且確定的位置,使得新建公路的長度最短.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,為坐標原點,為橢圓的左焦點,離心率為,直線與橢圓相交于,兩點.
(1)求橢圓的方程;
(2)若是弦的中點,是橢圓上一點,求的面積最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求的值;
(3)當時, 恒成立,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.
(1)求平面與平面所成二面角的大。
(2)設(shè)棱的中點為,求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人同時從A地趕往B地,甲先騎自行車到中點改為跑步,而乙則是先跑步,到中點后改為騎自行車,最后兩人同時到達B地.已知甲騎自行車比乙騎自行車快.若每人離開甲地的距離與所用時間的函數(shù)用圖象表示,則甲、乙對應(yīng)的圖象分別是
A.甲是(1),乙是(2)B.甲是(1),乙是(4)
C.甲是(3),乙是(2)D.甲是(3),乙是(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求下列各題:
(1)已知求的最大值;
(2)已知,求的最小值;
(3)已知,求的最大值;
(4)已知,求的最小值;
(5)已知,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com