【題目】如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,垂直于底面,.

1)求平面與平面所成二面角的大。

2)設(shè)棱的中點(diǎn)為,求異面直線所成角的大小.

【答案】1;(2.

【解析】

1)根據(jù)題意可證明,所以即為平面與平面所成二面角的平面角,結(jié)合線段關(guān)系即可求得的大小;

2)根據(jù)題意,可證明,從而由線面垂直的判定定理證明平面,即可得,所以異面直線所成角為.

1)由題意可知底面是邊長(zhǎng)為1的正方形,

,

又因?yàn)?/span>垂直于底面,平面

,

由于,

平面

平面,

所以,

即為平面與平面所成二面角的平面角,

可知,

中,

2)由,且為棱的中點(diǎn),

所以由等腰三角形性質(zhì)可知,

又因?yàn)?/span>,且,

所以平面,

平面,

所以,而,

所以平面,

平面

所以,

則異面直線垂直,所以異面直線的夾角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交警隨機(jī)抽取了途經(jīng)某服務(wù)站的40輛小型轎車在經(jīng)過某區(qū)間路段的車速(單位: ),現(xiàn)將其分成六組為 , , , 后得到如圖所示的頻率分布直方圖.

(1)某小型轎車途經(jīng)該路段,其速度在以上的概率是多少?

(2)若對(duì)車速在, 兩組內(nèi)進(jìn)一步抽測(cè)兩輛小型轎車,求至少有一輛小型轎車速度在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為,.

(1)求直線與圓相切的概率;

(2)將,5的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),證明: ;

(2)若關(guān)于的方程有且只有一個(gè)實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓的直徑點(diǎn)在圓, ,矩形所在的平面和圓所在的平面互相垂直,.

1)求證:平面平面;

2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且

1)若為線段的中點(diǎn),求證平面

2)求三棱錐體積的最大值;

3)若,點(diǎn)在線段上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有

)求橢圓的標(biāo)準(zhǔn)方程;

)過的直線與橢圓交于兩點(diǎn),過平行的直線與橢圓交于兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案