15.如圖中網(wǎng)格紙的小正方形的邊長是1,復(fù)平面內(nèi)點Z所表示的復(fù)數(shù)z滿足(z1-i)•z=1,則復(fù)數(shù)z1=(  )
A.-$\frac{2}{5}+\frac{4}{5}$iB.$\frac{2}{5}+\frac{4}{5}$iC.$\frac{2}{5}-\frac{4}{5}$iD.-$\frac{2}{5}-\frac{4}{5}$i

分析 由圖可知:z=2+i.再利用復(fù)數(shù)的運算法則即可得出.

解答 解:由圖可知:z=2+i.
∴(z1-i)•z=1,
則復(fù)數(shù)z1=i+$\frac{1}{2+i}$=i+$\frac{2-i}{(2+i)(2-i)}$=i+$\frac{2-i}{5}$=$\frac{2}{5}$+$\frac{4}{5}$i.
故選:B.

點評 本題考査了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\sqrt{3}$cos2x-2sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在銳角△ABC中,角A、B、C的對邊分別是a、b、c,f(A)=-$\sqrt{3}$,a=$\sqrt{3}$,b=$\sqrt{2}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)a∈R,求關(guān)于x的不等式ax2-3x-1≥0(x<0)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{2}$m(x-1)2-2x+3+lnx(m≥1).
(1)求證:函數(shù)f(x)在定義域內(nèi)存在單調(diào)遞減區(qū)間[a,b];
(2)是否存在實數(shù)m,使得曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點?若存在,求出實數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足f'(x)<f(x),且f(x+3)為偶函數(shù),f(6)=1,則不等式f(x)>ex的解集為( 。
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=3x-x3,x∈R.
(1)求f'(x)在[-2,3]上的最大值和最小值;
(2)設(shè)曲線y=f(x)與x軸正半軸的交點為P處的切線方程為y=g(x),求證:對于任意的正實數(shù)x,都有f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x|x≤0或x≥2},B={x|x<1},則集合A∩B=( 。
A.(-∞,0)B.(-∞,0]C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,正方形ABCD中,AC與BD交于O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,若$\overrightarrow{BD}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{OF}$,則λ+μ的值為( 。
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,E是邊長為2的正方形ABCD的AB邊的中點,將△AED與△BEC分別沿ED、EC折起,使得點A與點B重合,記為點P,得到三棱錐P-CDE.
(Ⅰ)求證:平面PED⊥平面PCD;
(Ⅱ)求點P到平面CDE的距離.

查看答案和解析>>

同步練習(xí)冊答案