【題目】【2017錦州質(zhì)量檢測(二)如圖,在四棱錐中,底面為直角梯形, ,平面底面 的中點, 是棱上的點, ,

(Ⅰ)求證:平面平面;

(Ⅱ)若三棱錐的體積是四棱錐體積的,設,試確定的值.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:由平面平面,且平面平面, 可證得平面,進而平面平面;

)()由, 的中點,可得.由平面平面,可得平面.設,梯形面積為,則SABQ= , ,利用即可求得.

試題解析:

(Ⅰ)證明:∵, 的中點,

∴四邊形為平行四邊形,∴

,,即

又∵平面平面,且平面平面,

平面,

平面,∴平面平面

, 的中點,∴,

∵平面平面,且平面平面,

平面

,梯形面積為,則三角形的面積為,

又設到平面的距離為,則,

根據(jù)題意,,

,

中點,所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列各圖中,不可能表示函數(shù)y=f(x)的圖象的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點與雙曲線的右焦點的連線交于第一象限的點,在點處的切線平行于的一條漸近線,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R),
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上不單調(diào),求實數(shù)a的取值范圍;
(2)記M(a,b)是|f(x)|在區(qū)間[﹣1,1]上的最大值,證明:當|a|≥2時,M(a,b)≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有兩個袋子,其中甲袋中裝有編號分別為1、2、3、4的4個完全相同的球,乙袋中裝有編號分別為2、4、6的3個完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個球,求兩球編號之和小于8的概率;
(Ⅱ)從甲袋中取2個球,從乙袋中取一個球,求所取出的3個球中含有編號為2的球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
①“三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球”是必然事件
②“當x為某一實數(shù)時可使”是不可能事件
③“明天順德要下雨”是必然事件
④“從100個燈泡中取出5個,5個都是次品”是隨機事件.
其中正確命題的個數(shù)是 ( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列函數(shù):①f(x)= ,g(x)=x+1;②f(x)=|x|,g(x)= ;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函數(shù)的是(
A.①②③
B.①③
C.②③
D.②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場計劃銷售某種產(chǎn)品,現(xiàn)邀請生產(chǎn)該產(chǎn)品的甲、乙兩個廠家進場試銷10天,兩個廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計,兩個廠家10天的試銷情況莖葉圖如下:

(Ⅰ)現(xiàn)從廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;

(Ⅱ)若將頻率視作概率,回答以下問題:

(。┯浺覐S家的日返利額為(單位:元),求的分布列和數(shù)學期望;

(ⅱ)商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學的統(tǒng)計學知識為商場做出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b)滿足f(x0)= ,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.若函數(shù)f(x)=﹣x2+mx+1是[﹣1,1]上的平均值函數(shù),則實數(shù)m的取值范圍是

查看答案和解析>>

同步練習冊答案