7.全稱命題:?x∈R,x2≤0的否定是( 。
A.?x∈R,x2≤0B.?x0∈R,x${\;}_{0}^{2}$>0C.?x0∈R,x${\;}_{0}^{2}$<0D.?x0∈R,x${\;}_{0}^{2}$≤0

分析 利用全稱命題的否定是特稱命題寫(xiě)出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,所以全稱命題:?x∈R,x2≤0的否定是:?x0∈R,x${\;}_{0}^{2}$>.
故選:B.

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若一個(gè)底面是正三角形且側(cè)棱垂直于底面的三棱柱的正(主)視圖如圖所示,則其側(cè)面積等于(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在直角坐標(biāo)平面內(nèi),滿足方程$({y^2}+2|x|)(\frac{x^2}{16}-\frac{y^2}{9})=0$的點(diǎn)(x,y)所構(gòu)成的圖形為(  )
A.拋物線及原點(diǎn)B.雙曲線及原點(diǎn)
C.拋物線、雙曲線及原點(diǎn)D.兩條相交直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)a=1.60.3,b=log2$\frac{1}{9},c={0.8^{1.6}}$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一條弦所在的直線的方程為x-y+3=0,弦的中點(diǎn)坐標(biāo)為(-2,1),求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為18,焦距為6,
(1)求這個(gè)橢圓的離心率;
(2)求這個(gè)橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,已知拋物線y2=4x上一點(diǎn)P到點(diǎn)A(3,0)的距離等于它到準(zhǔn)線的距離,則PA=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知拋物線y2=4x,F(xiàn)為拋物線焦點(diǎn),A、B為拋物線上的兩點(diǎn),且∠AFB=60°,M為AB中點(diǎn),過(guò)M作拋物線準(zhǔn)線的垂線交準(zhǔn)線于點(diǎn)N.求$\frac{|MN|}{|AB|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)F1、F2分別是雙曲線x2-$\frac{{y}^{2}}{9}$=1的左、右焦點(diǎn),若點(diǎn)P在雙曲線上,且向量$\overrightarrow{P{F}_{1}}$與$\overrightarrow{P{F}_{2}}$的夾角為60°,則S${\;}_{△{F}_{1}P{F}_{2}}$=( 。
A.9$\sqrt{3}$B.6$\sqrt{3}$C.4$\sqrt{3}$D.10$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案