函數(shù)y=-2sin(2x+
π
3
)
與y軸距離最近的對稱中心的坐標是
(-
π
6
,0)
(-
π
6
,0)
分析:由已知函數(shù)的解析式,結合正弦型函數(shù)的對稱性,我們可以判斷出函數(shù)y=-2sin(2x+
π
3
)
的對稱中心坐標為(-
π
6
+
2
,0)(k∈Z),結合與y軸距離最近其絕對值最小,易求出滿足條件的點的坐標,得到答案.
解答:解:∵函數(shù)y=-2sin(2x+
π
3
)

由正弦型函數(shù)的性質(zhì)可得,函數(shù)的對稱中心坐標為(-
π
6
+
2
,0)(k∈Z)點,
當k=0時,(-
π
6
,0)與y軸距離最近
故答案為:(-
π
6
,0)
點評:本題考查的知識點是正弦函數(shù)的對稱性,熟練掌握正弦函數(shù)的對稱性是解答本題的關鍵,另外距離y軸最近,即點的橫坐標最小,也是本題易忽略的點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,點P是函數(shù)y=2sin(ωx+φ)(x∈R,ω>0)圖象的最高點,M、N是圖象與x軸的交點,若
PM
PN
=0,則ω=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sin(2x-
π
6
)
的圖象( 。
A、關于原點成中心對稱
B、關于y軸成軸對稱
C、關于(
π
12
,0)
成中心對稱
D、關于直線x=
π
12
成軸對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-2sin(2x+
π3
)
取得最大值時所對應x的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對稱軸是x=
12
;
②函數(shù)y=tanx的圖象關于點(
π
2
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z.
以上四個命題中正確的有
 
(填寫正確命題前面的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=2sin3x的圖象向右平移
π
6
個單位后得到函數(shù)y=2sin(x-
π
6
)
的圖象;q:函數(shù)y=sin2x+2sinx-1的最大值為1.則下列命題中真命題為(  )

查看答案和解析>>

同步練習冊答案