某公司欲建連成片的網(wǎng)球場數(shù)座,用288萬元購買土地20000平方米,每座球場的建筑面積為1000平方米,球場每平方米的平均建筑費用與所建的球場數(shù)有關(guān),當(dāng)該球場建n座時,每平方米的平均建筑費用表示,且(其中),又知建5座球場時,每平方米的平均建筑費用為400元.
(1)為了使該球場每平方米的綜合費用最。ňC合費用是建筑費用與購地費用之和),公司應(yīng)建幾座網(wǎng)球場?
(2)若球場每平方米的綜合費用不超過820元,最多建幾座網(wǎng)球場?
(1)12;(2)18
解析試題分析:(1)根據(jù)球場建n座時,每平方米的平均建筑費用表示,且(其中),又知建5座球場時,每平方米的平均建筑費用為400元.所以可以求出的值,這樣就求出每平方米的平均建筑費用的表達式.另外每平米的購地費用是總費用除以總的建筑面積.再通過應(yīng)用基本不等式即可得到結(jié)論.本小題的關(guān)鍵是購地費用不是總費用除以購買了20000平方米,這也是易錯點.
(2)由(1)可知球場每平方米的綜合費用的表達式,又球場每平方米的綜合費用不超過820元,通過解不等式即可得到結(jié)論.
試題解析:(1)設(shè)建成個球場,則每平方米的購地費用為,
由題意知,則,所以.
所以,從而每平方米的綜合費用為
(元).
當(dāng)且僅當(dāng)=12時等號成立.所以當(dāng)建成12座球場時,每平方米的綜合費用最。 8分
(2)由題意得 ,即,
解得:.所以最多建 18個網(wǎng)球場. 12分
考點:1.基本不等式的應(yīng)用.2.二次不等式的解法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若不等式的解集為,求實數(shù)的值;
(2)在(Ⅰ)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且方程有兩個實根為.
(1)求函數(shù)的解析式 ;
(2)設(shè),解關(guān)于x的不等式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)的定義域;
(2)若函數(shù)的定義域為R,試求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com