【題目】在中,,,,已知,分別是,的中點,將沿折起,使到的位置如圖所示,且,連接,.
(1)求證:平面平面.
(2)求平面與平面所成銳二面角的大。
【答案】(1)證明見解析;(2)
【解析】
(1)取的中點分別為,連接,根據(jù)已知可得平面, 為等邊三角形,可證平面,再證,從而有平面,即可證明結論;
(2)以為坐標原點建立如下圖坐標系,確定出坐標,求出平面的法向量坐標,根據(jù)空間向量二面角公式即可求解.
(1)取,的中點分別為,,連接,,.
如圖所示,則,
,
所以平面平面 ,
,所以,
因為,是的中點,所以為等邊三角形,
所以,又因為平面,
平面,,所以平面.
,四邊形為平行四邊形,所以,
所以平面,又因為平面,
所以平面平面.
(2)以為坐標原點,在平面內與垂直的直線為軸,
所在的直線為軸建立空間直角坐標系,
則,
平面的一個法向量,
設平面的法向量,,
,所以,令,
則 ,所以,
所以,
所以平面與平面所成銳二面角的大小為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率,橢圓的上、下頂點分別為,,左、右頂點分別為,,左、右焦點分別為,.原點到直線的距離為.
(1)求橢圓的方程;
(2)是橢圓上異于,的任一點,直線,,分別交軸于點,,若直線與過點,的圓相切,切點為,證明:線段的長為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過拋物線y2=2px(p>0)上一點P(1,2),作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),當PA與PB的斜率存在且傾斜角互補時:
(1)求y1+y2的值;
(2)若直線AB在y軸上的截距b∈[﹣1,3]時,求△ABP面積S△ABP的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,點,,分別是橢圓的左、右焦點,為等腰三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點作直線交橢圓于兩點,其中,另一條過的直線交橢圓于兩點(不與重合),且點不與點重合. 過作軸的垂線分別交直線,于,.
①求點坐標; ②求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中e是自然對數(shù)的底數(shù),a,)在點處的切線方程是.
(1)求函數(shù)的單調區(qū)間.
(2)設函數(shù),若在上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進的次數(shù)之和不少于次稱為“優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進的概率分別為.
(1)若,,則在第一輪游戲他們獲“優(yōu)秀小組”的概率;
(2)若則游戲中小明小亮小組要想獲得“優(yōu)秀小組”次數(shù)為次,則理論上至少要進行多少輪游戲才行?并求此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一片產量很大的水果種植園,在臨近成熟時隨機摘下某品種水果100個,其質量(均在l至11kg)頻數(shù)分布表如下(單位: kg):
分組 |
|
|
|
|
|
頻數(shù) | 10 | 15 | 45 | 20 | 10 |
以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.
(1)由種植經驗認為,種植園內的水果質量近似服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.請估算該種植園內水果質量在內的百分比;
(2)現(xiàn)在從質量為 的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機抽取3個.若水果質量的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機抽取的3個水果總利潤為元,求的分布列及數(shù)學期望.
附: ,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內,洗衣機銷量約占,電視機銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結論中一定正確的是( )
A. 電視機銷量最大的是第4季度
B. 電冰箱銷量最小的是第4季度
C. 電視機的全年銷量最大
D. 電冰箱的全年銷量最大
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com