【題目】如圖是某商場(chǎng)2018年洗衣機(jī)、電視機(jī)和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機(jī)銷量約占,電視機(jī)銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )

A. 電視機(jī)銷量最大的是第4季度

B. 電冰箱銷量最小的是第4季度

C. 電視機(jī)的全年銷量最大

D. 電冰箱的全年銷量最大

【答案】C

【解析】

根據(jù)商場(chǎng)2018年洗衣機(jī)、電視機(jī)和電冰箱三種電器各季度銷量的百分比堆積圖,逐項(xiàng)判定,即可得到答案.

由題意,某商場(chǎng)2018年洗衣機(jī)、電視機(jī)和電冰箱三種電器各季度銷量的百分比堆積圖,

可知:A中,第4季度中電視機(jī)銷量所占的百分比最大,但銷量不一定最大,所以不正確;

B中,第4季度中電冰箱銷量所占的百分比最小,但銷量不一定最少,所以不正確;

由圖可知,全年中電視機(jī)銷售中所占的百分比最多,所以全年中電視機(jī)銷售最多,所以C正確;D不正確,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,已知分別是,的中點(diǎn),將沿折起,使的位置如圖所示,且,連接,

1)求證:平面平面

2)求平面與平面所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:

(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表);

(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差。

(i)若某用戶從該企業(yè)購(gòu)買了10件這種產(chǎn)品,記表示這10件產(chǎn)品中質(zhì)量指標(biāo)值位于(187.4,225.2)的產(chǎn)品件數(shù),求;

(ii)一天內(nèi)抽取的產(chǎn)品中,若出現(xiàn)了質(zhì)量指標(biāo)值在之外的產(chǎn)品,就認(rèn)為這一天的生產(chǎn)過程中可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查下。下面的莖葉圖是檢驗(yàn)員在一天內(nèi)抽取的15個(gè)產(chǎn)品的質(zhì)量指標(biāo)值,根據(jù)近似值判斷是否需要對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查。

附:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,離心率為,過的直線與橢圓交于,兩點(diǎn),且周長(zhǎng)為8.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在直線,使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),若存在求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐中, 互相垂直, , 是線段上一動(dòng)點(diǎn),若直線與平面所成角的正切的最大值是,則三棱錐的外接球的表面積是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).為自然對(duì)數(shù)的底數(shù))

1)當(dāng)時(shí),求處的切線方程,并討論的單調(diào)性;

2)當(dāng)時(shí),,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為體育迷,已知體育迷中有10名女性.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為體育迷與性別

有關(guān)?


非體育迷

體育迷

合計(jì)









合計(jì)




(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為超級(jí)體育迷,已知超級(jí)體育迷中有2名女性,若從超級(jí)體育迷中任意選取2人,求至少有1名女性觀眾的概率.


0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平行志愿投檔錄取模式是高考志愿的一種新方式,2008年教育部在6個(gè)省區(qū)實(shí)行平行志愿投檔錄取模式的試點(diǎn)改革.一年的實(shí)踐證叨,實(shí)行平行志愿投檔錄取模式,有效降低了考生志愿填報(bào)風(fēng)險(xiǎn).平行志愿是這樣規(guī)定:在同一批次設(shè)置幾個(gè)志愿,當(dāng)考生分?jǐn)?shù)達(dá)到這幾個(gè)學(xué)校提檔線時(shí),本批次的志愿依次檢索錄取.某考生根據(jù)對(duì)自己的高考分?jǐn)?shù)和對(duì)往年學(xué)校錄取情況分析,從報(bào)考指南中選擇了10所學(xué)校,作出如下表格:

學(xué)校

專業(yè)

數(shù)學(xué)系

計(jì)算機(jī)系

物理系

錄取概率

0.5

0.5

0.6

0.9

0.5

0.7

0.8

0.7

0.8

0.9

1)該考生從上表中的10所學(xué)校中選擇4所學(xué)校填報(bào),記為選擇的4所學(xué)校中報(bào)數(shù)學(xué)系專業(yè)的個(gè)數(shù),求的分布列及其期望

2)若該考生選擇了、4個(gè)學(xué)校在同一批次填報(bào)志愿,填報(bào)志愿表如下,如果僅以該考生對(duì)自己分析的錄取概率為依據(jù),當(dāng)改變這4個(gè)志愿填報(bào)的順序時(shí),是否改變他本批次錄取的可能性?請(qǐng)說明理由.

志愿

學(xué)校

第一志愿

第二志愿

第三志愿

第四志愿

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a、b滿足a2+b2-ab3

1)求a-b的取值范圍;

2)若ab0,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案