1.設(shè)a∈R,若函數(shù)y=ex-2ax,x∈R有大于0的極值點,則( 。
A.a<$\frac{1}{e}$B.a>$\frac{1}{e}$C.a>$\frac{1}{2}$D.a<$\frac{1}{2}$

分析 求導,由題意可知ex-2a=0有大于0的實根,分離變量根據(jù)x的取值范圍,求得a的取值范圍.

解答 解:∵y=ex-2ax,
∴y'=ex-2a.
由題意知ex-2a=0有大于0的實根,由ex=2a,得a=$\frac{1}{2}$ex
∵x>0,
∴ex>1.
∴a>$\frac{1}{2}$.
故選:C.

點評 本題主要考查函數(shù)的極值與其導函數(shù)的關(guān)系,考查分離變量法求參數(shù)的取值范圍,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知點A(0,2),點B(0,-2),直線MA、MB的斜率之積為-4,記點M的軌跡為C
(I)曲線C的方程為${x}^{2}+\frac{{y}^{2}}{4}=1(x≠0)$;
(II)設(shè)QP,為曲線C上的兩點,滿足OP⊥OQ(O為原點),則△OPQ面積的最小值是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在平面直角坐標系xOy中,動點P到定點$(0,\frac{1}{4})$和它到定直線$y=-\frac{1}{4}$的距離相等,設(shè)點P的軌跡為C1,將曲線C1上每一點的橫坐標變?yōu)樵瓉淼?倍,再向上平移1個單位得到曲線C2
(1)求曲線C1,C2的方程;
(2)過定點M(0,1)作兩條互相垂直的直線l1、l2,與曲線C2分別相交于A、B兩點,則△AMB的面積是否存在最小值?若存在,求出最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=x2,則f(a-1)的值為( 。
A.a2-1B.a2-2a+2C.a2-2a+1D.a2-a+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知二階矩陣A=$[{\begin{array}{l}3&5\\ 0&{-2}\end{array}}]$.
(1)求矩陣A的特征值和特征向量;
(2)設(shè)向量$\overrightarrow{β}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$,求A2016$\overrightarrow{β}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓C的方程為x2+y2+2x-6y-6=0,O為坐標原點.
(Ⅰ)求過點M(-5,11)的圓C的切線方程;
(Ⅱ)若圓C上有兩點P,Q關(guān)于直線x+my+4=0對稱,并且滿足$\overrightarrow{OP}•\overrightarrow{OQ}=-7$,求m的值和直線PQ的方程;
(Ⅲ)過點N(2,3)作直線與圓C交于A,B兩點,求△ABC的最大面積以及此時直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知f(x)=ax-lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當a=1時,求f(x)的單調(diào)區(qū)間和極值;
(2)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
(3)證明:(1-$\frac{1}{2}$)•($\frac{1}{2}-$$\frac{1}{3}$)•($\frac{1}{3}$-$\frac{1}{4}$)…($\frac{1}{n}$-$\frac{1}{n+1}$)<e3(3-n)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-t\\ y=-1+t\end{array}$(t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)寫出直線l的極坐標方程;
(Ⅱ)求直線l與曲線C交點的極坐標(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=|-x2+4|,若方程f(x)-2a=1恰有兩個實數(shù)根,則a的取值范圍是{a|a>$\frac{3}{2}$或a=-$\frac{1}{2}$}.

查看答案和解析>>

同步練習冊答案