【題目】某企業(yè)想通過做廣告來提高銷售額,經預測可知本企業(yè)產品的廣告費x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下對應數(shù)據:

x

2

4

5

6

8

y

30

40

60

50

70

由表中的數(shù)據得線性回歸方程為 = x+ ,其中 =6.5,由此預測當廣告費為7百萬元時,銷售額為萬元.

【答案】6300
【解析】解:樣本平均數(shù) = =5, = =50.

(xi )(yi )=﹣3×(﹣20)+(﹣1)×(﹣10)+0+0+3×20=130,

(xi2=9+1+0+1+9=20,

= ,

=50﹣6.5×5=7.5.

線性回歸方程為:y=6.5x+17.5,

預測當廣告費為7百萬元時,即x=7時,y=63百萬元.

所以答案是:6300.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程關于時間的函數(shù)關系式分別為,,,有以下結論:

①當時,甲走在最前面;

②當時,乙走在最前面;

③當時,丁走在最前面,當時,丁走在最后面;

④丙不可能走在最前面,也不可能走在最后面;

⑤如果它們一直運動下去,最終走在最前面的是甲.

其中,正確結論的序號為 (把正確結論的序號都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足:對任意、恒成立,當時,.

1求證上是單調遞增函數(shù);

2已知,解關于的不等式;

3,且不等式對任意恒成立.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場出售兩款型號不同的手機,由于市場需求發(fā)生變化,第一款手機連續(xù)兩次提價10%,第二款手機連續(xù)兩次降價10%,結果都以1210元出售.

(1)求第一款手機的原價;

(2)若該商場同時出售兩款手機各一部,求總售價與總原價之間的差額.(結果精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了考察某種中成藥預防流感的效果,抽樣調查40人,得到如下數(shù)據

患流感

未患流感

服用藥

2

18

未服用藥

8

12

根據表中數(shù)據,通過計算統(tǒng)計量K2= ,并參考以下臨界數(shù)據:

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

若由此認為“該藥物有效”,則該結論出錯的概率不超過(
A.0.05
B.0.025
C.0.01
D.0.005

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2(1+2sin2θ)=3.
(Ⅰ)寫出C1的普通方程和C2的直角坐標方程;
(Ⅱ)直線C1與曲線C2相交于A,B兩點,點M(1,0),求||MA|﹣|MB||.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4

(1)求橢圓C的方程;
(2)過右焦點F的直線l,交橢圓于A、B兩點,記△AOF的面積為S1 , △BOF的面積為S2 , 當S1=2S2時,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第35屆牡丹花會期間,我班有5名學生參加志愿者服務,服務場所是王城公園和牡丹公園.
(1)若學生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?
(2)每名學生都被隨機分配到其中的一個公園,設X,Y分別表示5名學生分配到王城公園和牡丹公園的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列和數(shù)學期望E(ξ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,A,B,C三點滿足。

(1)求證:A,B,C三點共線;

(2)若A(1,cosx),B1+sinxcosx),且x∈[0, ],函數(shù)f(x)=2m+||+m2的最小值為5,求實數(shù)m的值。

查看答案和解析>>

同步練習冊答案