分析 (Ⅰ)證明B,C,G,F(xiàn)四點(diǎn)共圓可證明四邊形BCGF對(duì)角互補(bǔ),由已知條件可知∠BCD=90°,因此問題可轉(zhuǎn)化為證明∠GFB=90°;
(Ⅱ)在Rt△DFC中,GF=$\frac{1}{2}$CD=GC,因此可得△GFB≌△GCB,則S四邊形BCGF=2S△BCG,據(jù)此解答.
解答 (Ⅰ)證明:∵DF⊥CE,
∴Rt△DFC∽R(shí)t△EDC,
∴$\frac{DF}{ED}$=$\frac{CF}{CD}$,
∵DE=DG,CD=BC,
∴$\frac{DF}{DG}$=$\frac{CF}{BC}$,
又∵∠GDF=∠DEF=∠BCF,
∴△GDF∽△BCF,
∴∠CFB=∠DFG,
∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,
∴∠GFB+∠GCB=180°,
∴B,C,G,F(xiàn)四點(diǎn)共圓.
(Ⅱ)∵E為AD中點(diǎn),AB=1,∴DG=CG=DE=$\frac{1}{2}$,
∴在Rt△DFC中,GF=$\frac{1}{2}$CD=GC,連接GB,Rt△BCG≌Rt△BFG,
∴S四邊形BCGF=2S△BCG=2×$\frac{1}{2}$×1×$\frac{1}{2}$=$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查四點(diǎn)共圓的判斷,主要根據(jù)對(duì)角互補(bǔ)進(jìn)行判斷,注意三角形相似和全等性質(zhì)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1] | C. | ($\frac{1}{2}$,1) | D. | ($\frac{1}{2}$,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | -6 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | t=$\frac{1}{2}$,s的最小值為$\frac{π}{6}$ | B. | t=$\frac{\sqrt{3}}{2}$,s的最小值為$\frac{π}{6}$ | ||
C. | t=$\frac{1}{2}$,s的最小值為$\frac{π}{3}$ | D. | t=$\frac{\sqrt{3}}{2}$,s的最小值為$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com