11.已知a是實(shí)數(shù),函數(shù)f(x)=$\frac{{x}^{2}+ax+4}{x}$是奇函數(shù),求f(x)在(0,+∞)上的最小值及取到最小值時x的值.

分析 利用奇函數(shù)的定義,求出a,根據(jù)基本不等式,即可求f(x)在(0,+∞)上的最小值及取到最小值時x的值.

解答 解:∵函數(shù)f(x)=$\frac{{x}^{2}+ax+4}{x}$是奇函數(shù),
∴$\frac{{x}^{2}-ax+4}{-x}$=-$\frac{{x}^{2}+ax+4}{x}$,
∴a=0,
∴f(x)=x+$\frac{4}{x}$,
∵x>0,
∴f(x)=x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,
當(dāng)且僅當(dāng)x=2時,f(x)在(0,+∞)上的最小值為4.

點(diǎn)評 本題考查函數(shù)的奇偶性,考查基本不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定義域是( 。
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓的一個頂點(diǎn)為A(0,-$\sqrt{2}$),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2$\sqrt{2}$=0的距離為3
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)P是橢圓上的點(diǎn),且以點(diǎn)P及兩個焦點(diǎn)為頂點(diǎn)的三角形面積等于1,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2+bx+c,若f(1)=0,且a>b>c,求證:方程f(x)=0必有兩個不等實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=$\left\{\begin{array}{l}{(3-a)x-4a,x<1}\\{lgx,x≥1}\end{array}\right.$ 是(-∞,+∞)上的增函數(shù),那么a的取值范圍是( 。
A.(1,+∞)B.(-∞,3)C.[$\frac{3}{5}$,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)△ABC的兩頂點(diǎn)分別是B(1,1)和C(3,6),求第三個頂點(diǎn)A的軌跡方程,使|AB|=|BC|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=0.2x的圖象經(jīng)過點(diǎn)(  )
A.(0,1)B.(1,0)C.(1,1)D.(0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn)M(1,$\sqrt{3}$).
(1)求圓C的方程;
(2)若點(diǎn)P是圓C上的動點(diǎn),求點(diǎn)P到直線x+y-4=0的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列各式中的x值:
(1)${log}_{\sqrt{2}}$x=1-${log}_{\sqrt{3}}$$\sqrt{3}$;
(2)lgx=1-1g5;
(3)log3(x+1)=2;
(4)1nx=2lna-3lnb.

查看答案和解析>>

同步練習(xí)冊答案