分析 (1)依題意可設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}=1$,求出右焦點(diǎn)F($\sqrt{{a}^{2}-2}$,0),由點(diǎn)到直線距離公式能求出a,由此能求出所求橢圓的方程.
(2)設(shè)P(x,y),由三角形面積為1,得:$\frac{1}{2}•2\sqrt{2}•|y|=1$,由此能求出點(diǎn)P的坐標(biāo).
解答 解:(1)依題意可設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}=1$,則右焦點(diǎn)F($\sqrt{{a}^{2}-2}$,0),
由題設(shè)$\frac{|\sqrt{{a}^{2}-2}+2\sqrt{2}|}{\sqrt{2}}=3$,解得a2=4,
故所求橢圓的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$.
(2)設(shè)P(x,y),由三角形面積為1,
得:$\frac{1}{2}•2\sqrt{2}•|y|=1$,解得y=$±\frac{\sqrt{2}}{2}$,
代入橢圓,得$x=±\sqrt{3}$,
∴點(diǎn)P的坐標(biāo)有四個(gè),分別為(-$\sqrt{3}$,-$\frac{\sqrt{2}}{2}$),(-$\sqrt{3}$,$\frac{\sqrt{2}}{2}$),($\sqrt{3}$,-$\frac{\sqrt{2}}{2}$),($\sqrt{3},\frac{\sqrt{2}}{2}$).
點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查點(diǎn)的坐標(biāo)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)和點(diǎn)到直線的距離公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,-3) | B. | (1,0) | C. | (2,3) | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -$\sqrt{3}$ | C. | -2$\sqrt{3}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com