【題目】(本小題滿分12分,第(1)問 4 分,第(2)問 8 分)

某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此實驗重復(fù)輪,第輪的點數(shù)分別記為,如果點數(shù)滿足,則認為第輪闖關(guān)成功,否則進行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束。

求第一輪闖關(guān)成功的概率;

如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望。

【答案】(1);(2).

【解析】試題分析:(1)共有種,列舉出第一輪闖關(guān)成功的,共有 種,利用古典概型概率公式可得結(jié)果;(2)隨機變量的取值為1,2,3,4,分別求出各隨機變量的概率,從而可得分布列,由期望公式可得結(jié)果.

試題解析:(1)當時, ,因此;當時, ,因此;當時, ,因此;當時, ,因此;

時, ,因此;當時, ,因此無值;

所以第一輪闖關(guān)成功的概率

(2)依題意,隨機變量的取值為1,2,3,4,設(shè)游戲第輪闖關(guān)結(jié)束后的概率為,則,

所以的分布列為

1

2

3

4

P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,存在使不等式成立,求實數(shù)的取值范圍;

(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在直線的下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖所示,設(shè)EF、E1、F1分別是長方體ABCDA1B1C1D1的棱ABCD、A1B1C1D1的中點,則平面EFD1A1與平面BCF1E1的位置關(guān)系是 (  )

A. 平行 B. 相交 C. 異面 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)發(fā)生里氏8.0級特大地震.地震專家對發(fā)生的余震進行了監(jiān)測,記錄的部分數(shù)據(jù)如下表:

強度(J)

1.6×1019

3.2×1019

4.5×1019

6.4×1019

震級(里氏)

5.0

5.2

5.3

5.4

注:地震強度是指地震時釋放的能量.

地震強度(x)和震級(y)的模擬函數(shù)關(guān)系可以選用y=alg x+b(其中a,b為常數(shù)).利用散點圖(如圖)可知a的值等于________.(取lg 2=0.3進行計算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCDA1B1C1D1中,E,FM分別是棱B1C1,BB1,C1D1的中點,是否存在過點E,M且與平面A1FC平行的平面?若存在,請作出并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014天津,文19】已知函數(shù)

(1) 的單調(diào)區(qū)間和極值;

(2)若對于任意的,都存在,使得,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD,AB=AD=CD=1BD=,BDCD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.

(1)A′C⊥BD.(2)∠BA′C=90°.

(3)CA′與平面A′BD所成的角為30°.

(4)四面體A′-BCD的體積為.

查看答案和解析>>

同步練習(xí)冊答案