19.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=4+sinα\end{array}\right.$,以坐標(biāo)原點O為極點,x軸的正半軸為極軸的坐標(biāo)系中,曲線C2的方程為ρ(cosθ-msinθ)+1=0(m為常數(shù)).
(1)求曲線C1,C2的直角坐標(biāo)方程;
(2)設(shè)P點是C1上到x軸距離最小的點,當(dāng)C2過點P時,求m的值.

分析 (1)利用參數(shù)方程、極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化方法求曲線C1,C2的直角坐標(biāo)方程;
(2)設(shè)P點是C1上到x軸距離最小的點,可得P(2,3),當(dāng)C2過點P時,代入求m的值.

解答 解:(1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=4+sinα\end{array}\right.$,消去參數(shù),得普通方程(x-2)2+(y-4)2=1;
曲線C2的方程為ρ(cosθ-msinθ)+1=0,直角坐標(biāo)方程為x-my+1=0;
(2)P點是C1上到x軸距離最小的點,可得P(2,3),
當(dāng)C2過點P時,代入求得m=1.

點評 本題考查參數(shù)方程、極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化方法,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.把216°化為弧度是( 。
A.$\frac{6π}{5}$B.$\frac{5π}{6}$C.$\frac{7π}{6}$D.$\frac{12π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2cosx($\sqrt{3}$sinx+cosx)+m,(x∈R,m∈R).
(1)求f(x)的最小正周期;
(2)若f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值是6,求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,C=$\frac{2π}{3}$,AB=3,則△ABC的周長為( 。
A.$6sin({A+\frac{π}{3}})+3$B.$6sin({A+\frac{π}{6}})+3$C.$2\sqrt{3}sin({A+\frac{π}{3}})+3$D.$2\sqrt{3}sin({A+\frac{π}{6}})+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}為等差數(shù)列,其中a2+a3=8,a5=3a2
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}中,b1=1,b2=2,從數(shù)列{an}中取出第bn項記為cn,若{cn}是等比數(shù)列,求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.有以下兩個推理過程:
(1)在等差數(shù)列{an}中,若a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立.相應(yīng)地,在等比數(shù)列{bn}中,若b10=1,則有等式b1b2…bn=b1b2…b19-n(n<19,n∈N*);
(2)由1=12,1+3=22,1+3+5=32,1+3+5+…+(2n-1)=n2
則(1)(2)兩個推理過程分別屬于(  )
A.歸納推理、演繹推理B.類比推理、演繹推理
C.歸納推理、類比推理D.類比推理、歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)x的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫的是某幾何體的三視圖,則該幾何體的表面積為S為( 。ㄗⅲ簣A臺側(cè)面積公式為S=π(R+r)l)
A.17π+3$\sqrt{17}$πB.20π+5$\sqrt{17}$πC.22πD.17π+5$\sqrt{17}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在原命題及其逆命題、否命題、逆否命題中,真命題的個數(shù)可以是( 。
A.1或2或3或4B.0或2或4C.1或3D.0

查看答案和解析>>

同步練習(xí)冊答案