9.把216°化為弧度是( 。
A.$\frac{6π}{5}$B.$\frac{5π}{6}$C.$\frac{7π}{6}$D.$\frac{12π}{5}$

分析 利用角度和弧度的換算,可得把216°化為弧度的值.

解答 解:216°=$\frac{216}{180}$π=$\frac{6}{5}$π,
故選:A.

點評 本題主要考查角度和弧度的換算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對于無窮數(shù)列{an},{bn},若bi=max{a1,a2,…,ai}-min{a1,a2,…,ak}(k=1,2,3,…),則稱{bn}是{an}的“收縮數(shù)列”,其中max{a1,a2,…,ak},min{a1,a2,…,ak}分別表示a1,a2,…,ak中的最大數(shù)和最小數(shù).
已知{an}為無窮數(shù)列,其前n項和為Sn,數(shù)列{bn}是{an}的“收縮數(shù)列”.
(1)若an=2n+1,求{bn}的前n項和;
(2)證明:{bn}的“收縮數(shù)列”仍是{bn};
(3)若S1+S2+…+Sn=$\frac{n(n+1)}{2}{a}_{1}+\frac{n(n-1)}{2}_{n}$(n=1,2,3,…),求所有滿足該條件的{an}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,正方形邊長是2,函數(shù)y=$\frac{1}{2x}$與正方形交于兩點,向正方形內(nèi)投飛鏢,則飛鏢落在陰影部分內(nèi)的概率是$\frac{7-3ln2}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若x,y滿足條件$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥2\end{array}\right.$,則z=2x-y的最小值為( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在自然界中存在著大量的周期函數(shù),比如聲波.若兩個聲波隨時間的變化規(guī)律分別為:y1=3$\sqrt{2}$sin(100πt),y2=3sin(100πt-$\frac{π}{4}$),則這兩個聲波合成后(即y=y1+y2)的聲波的振幅為( 。
A.6$\sqrt{2}$B.3+3$\sqrt{2}$C.3$\sqrt{2}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知 函數(shù)f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$)+m的最大值為2$\sqrt{2}$,則實數(shù)m的值為( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=Asin(ωx+φ),x∈R,(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)確定A,ω,φ的值,并寫出函數(shù)f(x)的解析式;
(Ⅱ)描述函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換而得到;
(Ⅲ)若f($\frac{α}{2}$)=$\frac{10}{13}$($\frac{π}{3}$<α<$\frac{5π}{6}$),求tan2(α-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1=$\sqrt{3}$,M為BC的中點,P為側(cè)棱BB1上的動點.
(1)求證:平面APM⊥平面BB1C1C;
(2)試判斷直線BC1與AP是否能夠垂直.若能垂直,求PB的長;若不能垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=4+sinα\end{array}\right.$,以坐標(biāo)原點O為極點,x軸的正半軸為極軸的坐標(biāo)系中,曲線C2的方程為ρ(cosθ-msinθ)+1=0(m為常數(shù)).
(1)求曲線C1,C2的直角坐標(biāo)方程;
(2)設(shè)P點是C1上到x軸距離最小的點,當(dāng)C2過點P時,求m的值.

查看答案和解析>>

同步練習(xí)冊答案