6.函數(shù)f(x)=x2-|x|-6,則f(x)的零點(diǎn)個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 解方程,根據(jù)方程的根的個(gè)數(shù),即可得出f(x)的零點(diǎn)個(gè)數(shù).

解答 解:x>0時(shí),x2-x-6=0,解得x=-2或3,∴x=3;
x<0時(shí),x2+x-6=0,解得x=2或-3,∴x=-3;
∴f(x)的零點(diǎn)個(gè)數(shù)為2個(gè).
故選:B.

點(diǎn)評(píng) 本題把二次函數(shù)與二次方程有機(jī)的結(jié)合了起來(lái),有方程的根與函數(shù)零點(diǎn)的關(guān)系可知,求方程的根,就是確定函數(shù)的零點(diǎn),也就是求函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.從某校參加高二年級(jí)學(xué)業(yè)水平考試模擬考試的學(xué)生中抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,畫(huà)出如圖的頻率分布直方圖.根據(jù)圖形信息,解答下列問(wèn)題:
(1)估計(jì)這次考試成績(jī)的平均分;
(2)估計(jì)這次考試成績(jī)的及格率和眾數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=ax3+bx2+cx在點(diǎn)x0處取得極大值5,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過(guò)點(diǎn)(1,0),(2,0),如圖所示,求:
(Ⅰ)x0的值;
(Ⅱ)a,b,c 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.圓(x-1)2+(y-1)2=4的圓心的極坐標(biāo)是$(\sqrt{2},\frac{π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=loga|x|(a>0,且a≠1),且f(x2+4x+8)>f(-π),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2$\sqrt{5}$sinθ.若點(diǎn)P的坐標(biāo)為(3,$\sqrt{5}}$),求PA+PB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy系中,已知直線l:2x+y+4=0,圓C:x2+y2+2x-2by+1=0(b為正實(shí)數(shù))
(1)若直線l與圓C交于A,B兩點(diǎn),且AB=$\frac{4\sqrt{5}}{5}$,求圓C的方程;
(2)作直線CD垂直于直線l,垂足為D,以D為圓心,以DC為半徑作圓D,記圓C的周長(zhǎng)為l(b),圓C與圓D的面積之和g(b),設(shè)f(b)=$\frac{g(b)}{l(b)}$,求函數(shù)f(b)的最小值及對(duì)應(yīng)的b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為:ρ=2cosθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若P(2,0),直線l與曲線C相交于A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x2-ax+1,x∈R.
(1)若f(x)≥0恒成立,求a的取值范圍;
(2)當(dāng)a∈(0,3),求函數(shù)y=f(x)在x∈[1,2]上的最大值;
(3)任意x1,x2∈[1,2],使得|f(x1)-f(x2)|≤4恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案