12.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(℃)1011131286
就診人數(shù)y(人)222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.

分析 (1)本題是一個古典概型,試驗發(fā)生包含的事件是從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有C62種情況,滿足條件的事件是抽到相鄰兩個月的數(shù)據(jù)的情況有5種,根據(jù)古典概型的概率公式得到結(jié)果.
(2)根據(jù)所給的數(shù)據(jù),求出x,y的平均數(shù),根據(jù)求線性回歸方程系數(shù)的方法,求出系數(shù)$\widehat$,把$\widehat$和x,y的平均數(shù),代入求$\widehat{a}$的公式,求出值,寫出線性回歸方程.

解答 解:(1)由題意知本題是一個古典概型,
設(shè)抽到相鄰兩個月的數(shù)據(jù)為事件A,
試驗發(fā)生包含的事件是從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有C62=15種情況,
每種情況都是等可能出現(xiàn)的其中,
滿足條件的事件是抽到相鄰兩個月的數(shù)據(jù)的情況有5種,
∴p(A)=$\frac{5}{15}$=$\frac{1}{3}$,
(2)由數(shù)據(jù)求得$\overline{x}$=11,$\overline{y}$=24,
由公式求得$\widehat$=$\frac{18}{7}$,
再由求得$\widehat{a}$=-$\frac{30}{7}$,
∴y關(guān)于x的線性回歸方程為$\widehat{y}$=$\frac{18}{7}$x-$\frac{30}{7}$.

點評 本題考查線性回歸方程的求法,考查等可能事件的概率,考查線性分析的應(yīng)用,考查解決實際問題的能力,是一個綜合題目,這種題目可以作為解答題出現(xiàn)在高考卷中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.甲乙兩個班級均為40人,進(jìn)行一門考試后,按學(xué)生成績及格與不及格進(jìn)行統(tǒng)計,甲班及格人數(shù)為36,乙班及格人數(shù)為24人,
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.5%的前提下認(rèn)為“考試成績與班級有關(guān)”?
(n=a+b+c+d)(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,)
P(K2≥k00.400.250.150.100.050.0250.0100.0050.001
k00.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某學(xué)生在上學(xué)路上要經(jīng)過3個路口,假設(shè)在各路口是否遇到紅燈時相互獨立的,遇到紅燈的概率都是$\frac{1}{3}$,遇到紅燈時停留的時間都是1分鐘,則這名學(xué)生在上學(xué)路上遇到紅燈停留的總時間至多是2分鐘的概率為(  )
A.$\frac{26}{27}$B.$\frac{8}{9}$C.$\frac{7}{9}$D.$\frac{23}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(n)=$\left\{\begin{array}{l}{n^2}(n為奇數(shù))\\-{n^2}(n為偶數(shù))\end{array}$,且an=f(n)+f(n+1),則a1+a2+a3+…+a50=( 。
A.50B.60C.70D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若△ABC的三內(nèi)角A、B、C對應(yīng)邊a、b、c滿足2a=b+c,則角A的取值范圍為(0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=x3+3ax2+3bx在x=2處有極值,其圖象在x=1處的切線平行于直線6x+2y+5=0,則f(x)的極大值與極小值之差為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某種種子每粒發(fā)芽的概率有都為0.9,現(xiàn)播種了1000粒,對于沒有發(fā)芽的種子,每粒需再補(bǔ)種2粒,補(bǔ)種的種子數(shù)記為X,則X的數(shù)學(xué)期望為200.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.邊界在直線y=0,x=e,y=x及曲線y=$\frac{1}{x}$上的封閉的圖形的面積為( 。
A.$\frac{3}{2}$B.2C.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)已知△ABC的三個內(nèi)角分別為A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案