【題目】已知等差數(shù)列{an}滿足:a4=7,a10=19,其前n項和為Sn
(1)求數(shù)列{an}的通項公式an及Sn;
(2)若等比數(shù)列{bn}的前n項和為Tn , 且b1=2,b4=S4 , 求Tn

【答案】
(1)解:∵a4=7,a10=19,

,解得a1=1,d=2,

則數(shù)列{an}的通項公式an=1+2(n﹣1)=2n﹣1,

Sn=n+ =n2


(2)解:若等比數(shù)列{bn}的前n項和為Tn,且b1=2,b4=S4,

∵S4=16,

∴b1=2,b4=S4=16,

則公比q3=

則q=2,

則Tn= =2n1﹣2


【解析】(1)根據(jù)等差數(shù)列的通項公式,求出首項和公差即可求數(shù)列{an}的通項公式an及Sn;(2)根據(jù)等比數(shù)列的通項公式求出首項和公比即可得到結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)g(x)=x2﹣2,f(x)= ,則f(x)的值域是(
A.
B.[0,+∞)??
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若執(zhí)行如圖的程序框圖,則輸出的a值是(
A.2
B.﹣
C.﹣
D.﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則不等式a(x2+1)+b(x﹣1)+c>2ax的解集為(
A.{x|0<x<3}
B.{x|x<0或x>3}
C.{x|﹣2<x<1}
D.{x|x<﹣2或x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x2﹣1|﹣2a+3,下列五個結論:
①當 時,函數(shù)f(x)沒有零點;
②當 時,函數(shù)f(x)有兩個零點;
③當 時,函數(shù)f(x)有四個零點;
④當a=2時,函數(shù)f(x)有三個零點;
⑤當a>2時,函數(shù)f(x)有兩個零點.
其中正確的結論的序號是 . (填上所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐A-BCD中,ABAD,BCBD,平面ABD平面BCD,點E、F(E與A、D不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于給定的正整數(shù)k,若數(shù)列lanl 滿足

=2kan對任意正整數(shù)n(n> k) 總成立,則稱數(shù)列lanl 是“P(k)數(shù)列.學科@網(wǎng)

(1)證明:等差數(shù)列l(wèi)anl是“P(3)數(shù)列”;

若數(shù)列lanl既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:lanl是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設30多個分支機構,需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從70后和80后的員工中隨機調查了100位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計

70后

20

20

40

80后

40

20

60

合計

60

40

100

(Ⅰ)根據(jù)調查的數(shù)據(jù),是否有90%以上的把握認為“是否愿意被外派與年齡有關”,并說明理由;

(Ⅱ)該公司舉行參觀駐海外分支機構的交流體驗活動,擬安排4名參與調查的70后員工參加.70后員工中有愿意被外派的3人和不愿意被外派的3人報名參加,現(xiàn)采用隨機抽樣方法從報名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式(x+ )( ﹣x)≥0的解集是(
A.{x|﹣ ≤x≤ }
B.{x|x≤﹣ 或x≥ }??
C.{x|x<﹣ 或x> }
D.{x|﹣ <x< }

查看答案和解析>>

同步練習冊答案