6.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,$asinB=\sqrt{2}sinC,cosC=\frac{1}{3}$,△ABC的面積為4,則c=6.

分析 由$asinB=\sqrt{2}sinC,cosC=\frac{1}{3}$,可得:ab=$\sqrt{2}$c,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{2}}{3}$.代入$\frac{1}{2}absinC$=4,解得c.

解答 解:由$asinB=\sqrt{2}sinC,cosC=\frac{1}{3}$,
∴ab=$\sqrt{2}$c,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{2}}{3}$.
∴$\frac{1}{2}absinC$=$\frac{1}{2}×\sqrt{2}c$×$\frac{2\sqrt{2}}{3}$=4,解得c=6.
故答案為:6.

點(diǎn)評(píng) 本題考查了正弦定理、三角形面積計(jì)算公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在圓x2+y2=4上,與直線 l:4x+3y-12=0的距離最大的點(diǎn)的坐標(biāo)是( 。
A.$({\frac{8}{5},\frac{6}{5}})$B.$({\frac{8}{5},-\frac{6}{5}})$C.$({-\frac{8}{5},-\frac{6}{5}})$D.$({-\frac{8}{5},\frac{6}{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.記max{m,n}表示m,n中的最大值,如max$\left\{{3,\sqrt{10}}\right\}=\sqrt{10}$.已知函數(shù)f(x)=max{x2-1,2lnx},g(x)=max{x+lnx,-x2+(a2-$\frac{1}{2}$)x+2a2+4a}.
(1)設(shè)$h(x)=f(x)-3({x-\frac{1}{2}}){({x-1})^2}$,求函數(shù)h(x)在(0,1]上零點(diǎn)的個(gè)數(shù);
(2)試探討是否存在實(shí)數(shù)a∈(-2,+∞),使得g(x)<$\frac{3}{2}$x+4a對(duì)x∈(a+2,+∞)恒成立?若存在,求a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F、G分別是BC、CC1、BB1的中點(diǎn).
(1)若BC=BB1,求證:BC1⊥平面AEG;
(2)若D為AB中點(diǎn),∠CA1D=45°,四棱錐C-A1B1BD的體積為$\frac{{\sqrt{6}}}{2}$,求三棱錐F-AEC的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知$cos\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}sin\frac{7π}{15}$=$\frac{2}{3}+cos(\frac{π}{2}+x)cosx$則sin2x等于( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=|x+1|.
(1)解不等式f(x)<2x;
(2)若2f(x)+|x-a|>8對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$則z=-$\frac{5}{4x+3y}$的最大值為( 。
A.-$\frac{15}{8}$B.-$\frac{5}{4}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在銳角△ABC中,a,b,c是角A,B,C的對(duì)邊,且$\sqrt{3}a=2csinA$.
(1)求角C的大。
(2)若a=2,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,AB、AC、AA1三條棱兩兩互相垂直,且AB=AC=AA1=2,E、F分別是BC、BB1的中點(diǎn).
(Ⅰ)求證:C1E⊥平面AEF;
(Ⅱ)求F到平面AEC1的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案