20.若a∈($\frac{π}{2}$,π),則3cos2α=$\sqrt{2}$sin($\frac{π}{4}$-α),則sin2α的值為( 。
A.-$\frac{1}{9}$B.-$\frac{1}{18}$C.-$\frac{8}{9}$D.-$\frac{17}{18}$

分析 由條件利用兩角和差的正弦公式可得cosα+sinα=$\frac{1}{3}$,平方再利用二倍角公式,求得sin2α的值.

解答 解:∵α∈($\frac{π}{2}$,π),則3cos2α=$\sqrt{2}$sin($\frac{π}{4}$-α),
∴3(cosα+sinα)•(cosα-sinα)=cosα-sinα,
∴cosα-sinα=0 (舍去),或cosα+sinα=$\frac{1}{3}$,
即 cosα+sinα=$\frac{1}{3}$,平方可得1+2cosα•sinα=1+sin2α=$\frac{1}{9}$,
∴sin2α=-$\frac{8}{9}$,
故選:C.

點評 本題主要考查兩角和差的正弦公式,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+1≥0}\\{|y|≤2}\end{array}\right.$,則z=x+y的最大值與最小值分別為(  )
A.6,-3B.1,-3C.6,-2D.1,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=log2x-4+2x的零點位于區(qū)間(  )
A.(3,4)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示,在楊輝三角中,斜線AB上方箭頭所示的數(shù)組成一個鋸齒形的數(shù)列:1,2,3,3,6,4,10,…,記這個數(shù)列的前n項和為S(n),則S(16)等于(  )
A.144B.146C.164D.461

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=logax,x∈[2,4](a>0,a≠1),函數(shù)的最大值比最小值大1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立坐標系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=at}\end{array}\right.$,(t為參數(shù)),曲線C1的方程為ρ(ρ-4sinθ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標方程;
(2)直線l與直線C2交于M,N兩點,若|MN|≥2$\sqrt{3}$,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l1:(m-2)x+3y+2m=0,l2:x+my+6=0
(1)若直線l1與l2垂直,求實數(shù)m的值;
(2)若直線l1與l2平行,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在R上的偶函數(shù)f(x),滿足f(2+x)=f(2-x),且當-2≤x≤0時,f(x)=log2(1-x),則f(101)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,若$\frac{tanA}{{a}^{2}}$=$\frac{tanB}{^{2}}$,則△ABC的形狀是( 。
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

同步練習(xí)冊答案