12.已知直線l1:(m-2)x+3y+2m=0,l2:x+my+6=0
(1)若直線l1與l2垂直,求實(shí)數(shù)m的值;
(2)若直線l1與l2平行,求實(shí)數(shù)m的值.

分析 (1)由已知條件利用直線與直線垂直的條件直接求解.
(2)由已知條件利用直線與直線平行的條件直接求解.

解答 解:(1)∵直線l1:(m-2)x+3y+2m=0,l2:x+my+6=0,直線l1與l2垂直,
∴(m-2)×1+3m=0,
解得m=$\frac{1}{2}$.
(2∵直線l1:(m-2)x+3y+2m=0,l2:x+my+6=0,直線l1與l2平行,
∴$\frac{m-2}{1}=\frac{3}{m}≠\frac{2m}{6}$,
解得m=-1.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線與直線垂直和直線與直線平行的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.直線x+y+2=0截圓x2+y2-4x-5=0的弦長是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知變換T把平面上的所有點(diǎn)都垂直投影到直線y=x上.
(1)試求出變換T所對應(yīng)的矩陣M.
(2)求直線x+y=2在變換T下所得到的圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a∈($\frac{π}{2}$,π),則3cos2α=$\sqrt{2}$sin($\frac{π}{4}$-α),則sin2α的值為( 。
A.-$\frac{1}{9}$B.-$\frac{1}{18}$C.-$\frac{8}{9}$D.-$\frac{17}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知⊙O的半徑為2,A為圓上的一個(gè)定點(diǎn),B為圓上的一個(gè)動點(diǎn),若點(diǎn)A,B,O不共線,且|$\overrightarrow{AB}$-t$\overrightarrow{AO}$|≥|$\overrightarrow{BO}$|對任意t∈R恒成立,則$\overrightarrow{AB}$•$\overrightarrow{AO}$=(  )
A.4$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5+a7=14,則S11=( 。
A.140B.70C.154D.77

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若存在正實(shí)數(shù)x0使e${\;}^{{x}_{0}}$(x0-a)<2(其中e是自然對數(shù)的底數(shù),e=2.71828…)成立,則實(shí)數(shù)a的取值范圍是(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b為正實(shí)數(shù),若直線y=x+a與曲線y=ex-b相切(其中e為自然對數(shù)的底數(shù)),則$\frac{{a}^{2}}{2+b}$的取值范圍為( 。
A.(0,$\frac{1}{2}$)B.(0,1)C.(0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=f(x)+sin$\frac{π}{6}$x為偶函數(shù),若f(${log_{\sqrt{2}}}2$)=$\sqrt{3}$,則f($log_2\frac{1}{4}$)=(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案