已知拋物線x2=4y的焦點為F,過焦點F且不平行于x軸的動直線交拋物線于A、B兩點,拋物線在A、B兩點處的切線交于點M.
(1)求證:A、M、B三點的橫坐標成等差數(shù)列;
(2)設(shè)直線MF交該拋物線于C、D兩點,求四邊形ACBD面積的最小值.
(1)見解析(2)32
【解析】(1)證明:由已知,得F(0,1),顯然直線AB的斜率存在且不為0,
則可設(shè)直線AB的方程為y=kx+1(k≠0),A(x1,y1),B(x2,y2),
由消去y,得x2-4kx-4=0,顯然Δ=16k2+16>0.
所以x1+x2=4k,x1x2=-4,
由x2=4y,得y=x2,所以y′=x,所以,直線AM的斜率為kAM=x1,
所以,直線AM的方程為y-y1=x1(x-x1),又=4y1,
所以,直線AM的方程為x1x=2(y+y1)①,同理,直線BM的方程為x2x=2(y+y2)②,
②-①并據(jù)x1≠x2得點M的橫坐標x=,即A、M、B三點的橫坐標成等差數(shù)列.
(2)【解析】
由①②易得y=-1,所以點M的坐標為(2k,-1)(k≠0).
所以kMF==-,則直線MF的方程為y=-x+1,
設(shè)C(x3,y3),D(x4,y4)由消去y,得x2+x-4=0,顯然Δ=+16>0,
所以x3+x4=-,x3x4=-4,又|AB|=
==4(k2+1),
|CD|==
,
因為kMF·kAB=-1,所以AB⊥CD,
所以SACBD=|AB|·|CD|=8≥32,
當且僅當k=±1時,四邊形ACBD面積取到最小值32.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第5課時練習卷(解析版) 題型:解答題
如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M、N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為r1=13;圓弧C2過點A(29,0).
(1)求圓弧C2所在圓的方程;
(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由;
(3)已知直線l:x-my-14=0與曲線C交于E、F兩點,當EF=33時,求坐標原點O到直線l的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題
方程x2+y2+4mx-2y+5m=0表示圓的充要條件是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題
已知直線l經(jīng)過點P(3,1),且被兩平行直線l1:x+y+1=0和l2:x+y+6=0截得的線段之長為5,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第3課時練習卷(解析版) 題型:填空題
已知直線x+ay=2a+2與直線ax+y=a+1平行,則實數(shù)a的值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第11課時練習卷(解析版) 題型:填空題
已知拋物線y2=2px(p≠0)及定點A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點.設(shè)直線AM、BM與拋物線的另一個交點分別為M1、M2,當M變動時,直線M1M2恒過一個定點,此定點坐標為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題
在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的右焦點為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.
(1)求橢圓C的標準方程;
(2)若θ=90°,,求實數(shù)m;
(3)試問的值是否與θ的大小無關(guān),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第九章第10課時練習卷(解析版) 題型:填空題
設(shè)拋物線y2=8x的準線與x軸交于點Q,若過點Q的直線l與拋物線有公共點,則直線l的斜率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應(yīng)性訓(xùn)練文數(shù)學卷(解析版) 題型:填空題
若直線(為參數(shù))被圓截得的弦長為最大,則此直線的傾斜角為 ;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com