分析 (1)由條件利用正弦函數(shù)的定義域和值域求得函數(shù)f(x)的值域.
(2)令$f(x)=2sin(2x-\frac{π}{3})=1$,求得x的值,可得結(jié)論.
解答 解:(1)f(x)=$2sinxcosx-2\sqrt{3}{cos^2}x+\sqrt{3}$=$sin2x-\sqrt{3}cos2x=2sin(2x-\frac{π}{3})$,
當(dāng)$x∈[0,\frac{π}{2}]$時(shí),$2x-\frac{π}{3}∈[-\frac{π}{3},\frac{2π}{3}]$,所以f(x)的值域?yàn)?[-\sqrt{3},2]$.
(2)令$f(x)=2sin(2x-\frac{π}{3})=1$,∴$sin(2x-\frac{π}{3})=\frac{1}{2}$,故 $2x-\frac{π}{3}=2kπ+\frac{π}{6}$或$2x-\frac{π}{3}=2kπ+\frac{5π}{6}$,k∈Z,
∴當(dāng)函數(shù)y=f(x)的圖象和直線 y=1時(shí)的兩交點(diǎn)的最短距離為$\frac{π}{3}$.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的定義域和值域,函數(shù)的零點(diǎn)與方程的根的關(guān)系,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com