19.若{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}是空間的一個(gè)基底,試判斷{$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow$+$\overrightarrow{c}$,$\overrightarrow{c}$+$\overrightarrow{a}$}能否作為空間的一個(gè)基底.

分析 利用空間向量基本定理即可得出.

解答 解:假設(shè){$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow$+$\overrightarrow{c}$,$\overrightarrow{c}$+$\overrightarrow{a}$}不能作為空間的一個(gè)基底.
則存在實(shí)數(shù)x,y使得$\overrightarrow{a}$+$\overrightarrow$=x($\overrightarrow$+$\overrightarrow{c}$)+y($\overrightarrow{c}$+$\overrightarrow{a}$),
即(1-y)$\overrightarrow{a}$+(1-x)$\overrightarrow$-(x+y)$\overrightarrow{c}$=$\overrightarrow{0}$,
∴$\left\{\begin{array}{l}{1-y=0}\\{1-x=0}\\{-(x+y)=0}\end{array}\right.$,此方程組無解,
因此假設(shè)不正確,
∴{$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow$+$\overrightarrow{c}$,$\overrightarrow{c}$+$\overrightarrow{a}$}能作為空間的一個(gè)基底.

點(diǎn)評(píng) 本題考查了空間向量基本定理、共面向量基本定理、反證法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一種新款手機(jī)的價(jià)格原來是a元,在今后m個(gè)月內(nèi),價(jià)格平均每月減少p%,則這款手機(jī)的價(jià)格y元隨月數(shù)x變化的函數(shù)解析式:y=a(1-p%)x(0≤x≤m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(2x+1)10的二項(xiàng)展開式中的第八項(xiàng)為960x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的所有項(xiàng)都是不等于1的正數(shù),{an}的前n項(xiàng)和為Sn,已知點(diǎn)${P_n}({a_n},{S_n}),n∈{N^*}$在直線y=kx+b上(其中常數(shù)k≠0,且k≠1)數(shù)列,又${b_n}={log_{\frac{1}{2}}}{a_n}$.
(1)求證數(shù)列{an}是等比數(shù)列;
(2)如果bn=3-n,求實(shí)數(shù)k、b的值;
(3)若果存在t,s∈N*,s≠t使得點(diǎn)(t,bs)和(s,bt)都在直線在y=2x+1上,是否存在自然數(shù)M,當(dāng)n>M(n∈N*)時(shí),an>1恒成立?若存在,求出M的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=2sinxcosx-2\sqrt{3}{cos^2}x+\sqrt{3}$.
(1)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),求函數(shù)f(x)的值域;
(2)求函數(shù)y=f(x)的圖象與直線y=1相鄰兩個(gè)交點(diǎn)間的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=asinx-bcosx(a,b常數(shù),a≠0,x∈R)在x=$\frac{3π}{4}$處取得最小值,則函數(shù)y=f($\frac{π}{4}$-x)是( 。
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)($\frac{3π}{2}$,0)對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)($\frac{3π}{2}$,0)對(duì)稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.寫出命題“若m,n都是有理數(shù),則m+n是有理數(shù).”的逆命題,否命題和逆否命題,并判斷所有命題的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.把5個(gè)桃子,2個(gè)香蕉分給3只小猴子,每只小猴子至少分到2個(gè)水果,則兩個(gè)香焦恰好分給了同一個(gè)小猴子的概率為( 。
A.$\frac{2}{21}$B.$\frac{4}{21}$C.$\frac{5}{21}$D.$\frac{11}{42}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求(-$\frac{1}{2}$)-2+125${\;}^{\frac{2}{3}}$+2lg$\frac{1}{2}$-lg25的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案