【題目】某市擬招商引資興建一化工園區(qū),新聞媒體對此進行了問卷調查,在所有參與調查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如表所示:

支持

保留

不支持

30歲以下

900

120

280

30歲以上(含30歲)

300

260

140

(Ⅰ)在所有參與調查的人中,用分層抽樣的方法抽取部分市民做進一步調研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在30歲以上的人有多少人被抽;

(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進一步的調研,將此6人看作一個總體,在這6人中任意選取2人,求至少有1人在30歲以上的概率.

【答案】I;(II.

【解析】試題分析:(I)運用分層抽樣的知識建立方程求解;(II)依據(jù)題設借助列舉法運用古典概型的計算公式求解:

試題解析:

解:(Ⅰ)設在“支持”的群體中抽取個人,其中年齡在歲以下的人被抽取人.

由題意,得.則人.

所以在“支持”的群體中,年齡在歲以下的人有人被抽。

(Ⅱ)設所選的人中,有人年齡在歲以下.則,∴

即從歲以下抽取人,另一部分抽取人.分別記作

則從中任取人的所有基本事件為

.共15個

其中至少有人在歲以上的基本事件有個.

分別是

所以在這6人中任意選取人,至少有人在歲以上的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知長方體中, 的中點,如圖所示.

(1) 證明: 平面;

(2) 求平面與平面所成銳二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·無錫模擬)已知函數(shù)f(x)滿足,當x[0,1]時,f(x)x.g(x)f(x)mx2m在區(qū)間(1,1]上有兩個零點,則實數(shù)m的取值范圍是________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2018·日照一模)如圖所示,ABCD-A1B1C1D1是長方體,OB1D1的中點,直線A1C交平面AB1D1于點M,給出下列結論:

A、M、O三點共線;②A、M、O、A1不共面;③A、M、C、O共面;④B、B1、O、M共面.

其中正確結論的序號為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)當時,討論函數(shù)圖像的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域為D,如果x∈D,y∈D,使得f(x)=-f(y)成立,則稱函數(shù)f(x)為“Ω函數(shù)”.給出下列四個函數(shù):①y=sin x;②y=2x;③y=;④f(x)=ln x.則其中“Ω函數(shù)”共有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知函數(shù)f(x)=xln xx.

(Ⅰ)求函數(shù)f(x)的極值;

(Ⅱ)若x>0,f(x)+ax2≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正項等差數(shù)列{an}滿足a1=4,且a2,a4+2,2a7-8成等比數(shù)列,{an}的前n項和為Sn.

(1)求數(shù)列{an}的通項公式;

(2)令,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x-1|.

(Ⅰ)解不等式f(x)+f(x+4)≥8;

(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f().

查看答案和解析>>

同步練習冊答案