【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線,,C與l有且僅有一個公共點.

(Ⅰ)求a;

(Ⅱ)O為極點,A,B為C上的兩點,且,求的最大值.

【答案】(1)(2)

【解析】

試題分析(I)把圓與直線的極坐標方程分別化為直角坐標方程,利用直線與圓相切的性質即可得出a;

II)不妨設A的極角為θB的極角為θ+,則|OA|+|OB|=2cosθ+2cosθ+=2cosθ+),利用三角函數(shù)的單調性即可得出.

解:()曲線Cρ=2acosθa0),變形ρ2=2ρacosθ,化為x2+y2=2ax,即(x﹣a2+y2=a2

曲線C是以(a0)為圓心,以a為半徑的圓;

lρcosθ﹣=,展開為

∴l(xiāng)的直角坐標方程為x+y﹣3=0

由直線l與圓C相切可得=a,解得a=1

)不妨設A的極角為θ,B的極角為θ+,

|OA|+|OB|=2cosθ+2cosθ+

=3cosθ﹣sinθ=2cosθ+),

θ=﹣時,|OA|+|OB|取得最大值2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M是滿足下列性質的函數(shù)的全體:在定義域內存在,使函數(shù)成立;

1)請給出一個的值,使函數(shù)

2)函數(shù)是否是集合M中的元素?若是,請求出所有組成的集合;若不是,請說明理由;

3)設函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司想了解對某產品投入的宣傳費用與該產品的營業(yè)額的影響.右圖是以往公司對該產品的宣傳費用 (單位:萬元)和產品營業(yè)額 (單位:萬元)的統(tǒng)計折線圖.

(Ⅰ)根據(jù)折線圖可以判斷,可用線性回歸模型擬合宣傳費用與產品營業(yè)額的關系,請用相關系數(shù)加以說明;

(Ⅱ)建立產品營業(yè)額關于宣傳費用的回歸方程;

(Ⅲ)若某段時間內產品利潤與宣傳費和營業(yè)額的關系為應投入宣傳費多少萬元才能使利潤最大,并求最大利潤. (計算結果保留兩位小數(shù))

參考數(shù)據(jù):,,,

參考公式:相關系數(shù),回歸方程中斜率和截距的最小二乘法估計公式分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(1)試討論f(x)上的單調性;

(2)g(x)=ax-a(a<1)當m=-1時,若恰有兩個整數(shù)x1,x2,使得求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,底面為矩形, 且側面平面,側面平面,為正三角形,

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知 為橢圓 的左焦點,且橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ) 是否存在平行四邊形 ,同時滿足下列兩個條件:

①點在直線上;②點 在橢圓上且直線 的斜率等于1.如果存在,求出點坐標;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗,某建筑工程施工期間的降水量(單位:)對工期的影響如下表:

降水量

工期延誤天數(shù)

0

1

3

6

根據(jù)某氣象站的資料,某調查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

(1)求這天的平均降水量;

(2)根據(jù)降水量的折線圖,分別估計該工程施工延誤天數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,恒成立,求實數(shù)的取值范圍;

(2)證明:當時,函數(shù)有最小值,設最小值為,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案