【題目】已知橢圓C:1(a>b>0)的右頂點(diǎn)為A(2,0),離心率為.

1)求橢圓C的方程;

2)設(shè)過(guò)點(diǎn)P(0,﹣2)的直線l與橢圓C相交于MN兩點(diǎn),當(dāng)△OMN的面積最大時(shí)(O為坐標(biāo)原點(diǎn)),求直線l的方程.

【答案】112yx2.

【解析】

1)根據(jù)橢圓右頂點(diǎn)和離心率,結(jié)合,求得的值,由此求得橢圓方程.

2)設(shè)出直線的方程,聯(lián)立直線方程和橢圓方程,寫(xiě)出韋達(dá)定理,利用弦長(zhǎng)公式求得,利用點(diǎn)到直線的距離公式求得,由此求得三角形的面積的表達(dá)式,利用換元法,結(jié)合基本不等式,求得面積的最大值,以及此時(shí)直線的斜率,進(jìn)而求得直線的方程.

1)由題意得:a=2,eb2=a2c2,解得:a2=2b2=1,所以橢圓的方程為:1

2)由題意得直線l的斜率存在且不為零,設(shè)直線l的方程:y=kx2M(x,y),N(x'y'),聯(lián)立與橢圓的方程整理得:(1+4k2)x216kx+12=0,△=(16k)24×12×(1+4k2)>0,得k2,x+x'xx',所以弦長(zhǎng)MN|xx'|4,原點(diǎn)到直線l的距離d,所以SOMNMNd4,令t(t>0),所以4k2=t2+3, S1,當(dāng)且僅當(dāng)t=2時(shí)等號(hào)成立,即k2,滿足條件,解得k,所以直線l的方程為:yx2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),在圓E上,過(guò)點(diǎn)的直線l與圓E相切.

求圓E的方程;

求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)單調(diào)函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,如果單調(diào)函數(shù)使得函數(shù)的值域也是,則稱函數(shù)是函數(shù)的一個(gè)保值域函數(shù).已知定義域?yàn)?/span>的函數(shù),函數(shù)互為反函數(shù),且的一個(gè)保值域函數(shù)”,的一個(gè)保值域函數(shù),則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)min{mn}表示m,n二者中較小的一個(gè),已知函數(shù)f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為

A.-4B.-3C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種零件的質(zhì)量指標(biāo)值以分?jǐn)?shù)(滿分100)衡量,并根據(jù)分?jǐn)?shù)的高低劃分三個(gè)等級(jí),如下表:

為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,檢驗(yàn)員隨機(jī)抽取了100件零件,進(jìn)行質(zhì)量指標(biāo)值檢查,將檢查結(jié)果進(jìn)行整理得到如下的頻率分布直方圖:

(1)若該生產(chǎn)線的質(zhì)量指標(biāo)值要求為:

第一條:生產(chǎn)線的質(zhì)量指標(biāo)值合格和優(yōu)秀的零件至少要占全部零件的75%,

第二條:生產(chǎn)線的質(zhì)量指標(biāo)值平均分不低于95分;

如果同時(shí)滿足以上兩條就認(rèn)定生產(chǎn)線的質(zhì)量指標(biāo)值合格,否則為不合格,請(qǐng)根據(jù)以上抽樣調(diào)查數(shù)據(jù),判斷該生產(chǎn)線的質(zhì)量指標(biāo)值是否合格?

(2)在樣本中,按質(zhì)量指標(biāo)值的等級(jí)用分層抽樣的方法從質(zhì)量指標(biāo)值不合格和優(yōu)秀的零件中抽取5件,再?gòu)倪@5件中隨機(jī)抽取2件,求這兩件的質(zhì)量指標(biāo)值恰好一個(gè)不合格一個(gè)優(yōu)秀的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B,C三個(gè)班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過(guò)分層抽樣獲取了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)).

A

6

6.5

7

B

6

7

8

C

5

6

7

8

1)試估計(jì)C班學(xué)生人數(shù);

2)從A班和B班抽出來(lái)的學(xué)生中各選一名,記A班選出的學(xué)生為甲,B班選出的學(xué)生為乙,若學(xué)生鍛煉相互獨(dú)立,求甲的鍛煉時(shí)間大于乙的鍛煉時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二全體師生今秋開(kāi)學(xué)前在新校區(qū)體驗(yàn)周活動(dòng)中有優(yōu)異的表現(xiàn),學(xué)校擬對(duì)高二年級(jí)進(jìn)行表彰;

1)若要表彰3個(gè)優(yōu)秀班級(jí),規(guī)定從6個(gè)文科班中選一個(gè),14個(gè)理科班中選兩個(gè)班級(jí),有多少種不同的選法?

2)年級(jí)組擬在選出的三個(gè)班級(jí)中再選5名學(xué)生,每班至少1名,最多2名,則不同的分配方案有多少種?

3)選中的這5名學(xué)生和三位年級(jí)負(fù)責(zé)人徐主任,陳主任,付主任排成一排合影留念,規(guī)定這3位老師不排兩端,且老師順序固定不變,那么不同的站法有多少種?

查看答案和解析>>

同步練習(xí)冊(cè)答案