15.將函數(shù)f(x)=sin(3x+φ)(0<φ<π)的圖象向右平移$\frac{π}{12}$個(gè)單位后,所得圖象關(guān)于y軸對(duì)稱,則φ的值為$\frac{3π}{4}$.

分析 利用三角函數(shù)的圖象平移得到y(tǒng)=sin(3x+φ-$\frac{π}{4}$),結(jié)合該函數(shù)為偶函數(shù),及φ的范圍即可求得φ的值.

解答 解:∵函數(shù)y=sin(3x+φ)的圖象向右平移$\frac{π}{12}$個(gè)單位后的解析式為:
y=sin[3(x-$\frac{π}{12}$)+φ]=sin(3x+φ-$\frac{π}{4}$),
∵其圖象關(guān)于y軸對(duì)稱,
∴φ-$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,
∴解得:φ=kπ+$\frac{3π}{4}$,k∈Z,
∵0<φ<π,
∴φ=$\frac{3π}{4}$.
故答案為:$\frac{3π}{4}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象平移,考查了三角函數(shù)奇偶性的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果直線l,m與平面α,β,γ滿足:m在平面α內(nèi),且m⊥γ,l=β∩γ,l∥α,那么必有(  )
A.α丄γ,m∥βB.α 丄γ,l丄mC.m∥β,l丄mD.α∥β,γ丄β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過(guò)點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求M的軌跡方程;
(2)當(dāng)|OP|=|OM|時(shí),求l的方程及△POM的面積.
(3)在(2)的條件下過(guò)圓C:x2+y2-8y=0和l交點(diǎn)且面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f'(x)>0,設(shè)a=f(0),b=f(${\frac{1}{3}}$),c=f(3),則a,b,c的大小關(guān)系為c>a>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖是一個(gè)幾何體的三視圖,其中俯視圖中的曲線為四分之一圓,則該幾何體的表面積為(  )
A.3B.$3+\frac{π}{2}$C.4D.$4-\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知二次函數(shù)f(x)滿足:f(0)=3;f(x+1)=f(x)+2x.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知cos(α-$\frac{π}{6}$)+sinα=$\frac{{4\sqrt{3}}}{5}$,則cos(α+$\frac{2π}{3}$)的值是-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知點(diǎn)P在橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1內(nèi)部,且F1,F(xiàn)2是其焦點(diǎn),則下列式子正確的是( 。
A.|PF1|+|PF2|<4B.|PF1|+|PF2|>4C.|PF1|+|PF2|<6D.|PF1|+|PF2|>6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=sinωx-cosωx(ω>0),z∈R,若函數(shù)f(x)在(-ω,ω)上是增函數(shù),且圖象關(guān)于直線x=-ω對(duì)稱,則ω=$\frac{\sqrt{π}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案