分析 利用三角函數(shù)的單調(diào)性、對(duì)稱性即可得出.
解答 解:函數(shù)f(x)=sinωx-cosωx=$\sqrt{2}$$sin(ωx-\frac{π}{4})$(ω>0),z∈R,
∵函數(shù)f(x)在(-ω,ω)上是增函數(shù),
∴2kπ-$\frac{π}{2}$≤ωx-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函數(shù)f(x)的單調(diào)遞增區(qū)間為:$[\frac{2kπ-\frac{π}{4}}{ω},\frac{2kπ+\frac{3π}{4}}{ω}]$,k∈Z,
∴可得:-ω≥$\frac{2kπ-\frac{π}{4}}{ω}$,ω≤$\frac{2kπ+\frac{3π}{4}}{ω}$,k∈Z,
解得:0<ω2≤$\frac{π}{4}-2kπ$,且0<ω2≤2kπ+$\frac{3π}{4}$,k∈Z,
解得:$-\frac{3}{8}$<k<$\frac{1}{8}$,k∈Z,
∴可解得:k=0,
又圖象關(guān)于直線x=-ω對(duì)稱,
∴$sin(-{ω}^{2}-\frac{π}{4})$=±1,
∴ω2+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k=0,ω>0.
解得ω=$\frac{\sqrt{π}}{2}$.
故答案為:$\frac{\sqrt{π}}{2}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的單調(diào)性對(duì)稱性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40(3+$\sqrt{3}$),140$\sqrt{2}$ | B. | 40(3+$\sqrt{3}$),80$\sqrt{6}$ | C. | 60($\sqrt{2}$+$\sqrt{3}$),140$\sqrt{2}$ | D. | 60($\sqrt{2}$+$\sqrt{3}$),80$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{\sqrt{3}}{6}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{2}{\sqrt{3}}$ | D. | ±$\frac{2}{\sqrt{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $3\sqrt{2}$ | C. | 6 | D. | $\sqrt{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com