3.若長軸長為2a,短軸長為2b橢圓的面積為πab,則$\int_{-3}^3{\sqrt{1-\frac{x^2}{9}}}dx$=( 。
A.B.C.D.$\frac{3π}{2}$

分析 根據(jù)積分的幾何意義即可得到結(jié)論.

解答 解:設y=$\sqrt{1-\frac{{x}^{2}}{9}}$,(y≥0),
則$\frac{{x}^{2}}{9}$+y2=1(y≥0)對應的曲線為橢圓的上半部分,對應的面積S=$\frac{1}{2}$πab=$\frac{1}{2}×π$×3×1=$\frac{3π}{2}$,
根據(jù)積分的幾何意義可得$\int_{-3}^3{\sqrt{1-\frac{x^2}{9}}}dx$=$\frac{3π}{2}$.
故選:D.

點評 本題主要考查積分的計算,要求熟練掌握常見函數(shù)的積分公式,對于不好求的積分函數(shù),要利用對應的區(qū)域面積進行計算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+(2a-1)x.
(1)當a=3時,求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.實數(shù)a∈[-1,1],b∈[0,2].設函數(shù)$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+bx$的兩個極值點為x1,x2,現(xiàn)向點(a,b)所在平面區(qū)域投擲一個飛鏢,則飛鏢恰好落入使x1≤-1且x2≥1的區(qū)域的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列判斷錯誤的是(  )
A.命題“若xy=0,則x=0”的否命題為“若xy≠0,則x≠0”
B.命題“?x∈R,x2-x-1≤0”的否定是“$?{x_0}∈{R},{x_0}^2-{x_0}-1>0$”
C.若p,q均為假命題,則p∧q為假命題
D.命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是a≥4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.把正整數(shù)按如圖所示的規(guī)律排序,則從2003到2005的箭頭方向依次為向右、向上. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知復數(shù)z1=i(1-i)3,
(1)求|z1|;
(2)若|z|=1,求|z-z1|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.等比數(shù)列{an}中,公比q>0,Sn為其前n項和,S2=3,S4=15.
(1)求an;
(2)記數(shù)列{Sn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設函數(shù)f(x)是奇函數(shù),當x≤0時,f(x)=$\frac{1}{3}$x3+x2-2ax(a∈R).
(1)若f(x)在x=-1處有極值,求a的值;
(2)求當x≥0時,函數(shù)f(x)的解析式;
(3)如果函數(shù)f(x)在[$\frac{1}{2}$,2]上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知四棱錐P-ABCD中,△PAD是邊長為a的正三角形,平面PAD⊥平面ABCD,四邊形ABCD是菱形,∠DAB=60°,E是AD的中點,F(xiàn)是PB的中點.
(1)求證:EF∥平面PCD.
(2)求二面角B-EC-F的余弦值.

查看答案和解析>>

同步練習冊答案