分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.
解答 解:(1)a=3時(shí),f(x)=$\frac{1}{3}$x3+3x2+5x,
f′(x)=x2+6x+5=(x+1)(x+5),
令f′(x)>0,解得:x>-1或x<-5,
令f′(x)<0,解得:-5<x<-1,
∴f(x)在(-∞,-5)遞增,在(-5,-1)遞減,在(-1,+∞)遞增,
∴f(x)極大值=f(-5)=$\frac{25}{3}$,f(x)極小值=f(-1)=-$\frac{7}{3}$;
(2)f′(x)=(x+2a-1)(x+1),
a<1時(shí),-2a+1>-1,
令f′(x)>0,解得:x>-2a+1或x<-1,
令f′(x)<0,解得:-1<x<-2a+1,
∴f(x)在(-∞,-1)遞增,在(-1,-2a+1)遞減,在(-2a+1,+∞)遞增,
a=1時(shí),f′(x)≥0,f(x)在R遞增,
a>1時(shí),-2a+1<-1,
令f′(x)>0,解得:x<-2a+1或x>-1,
令f′(x)<0,解得:-2a+1<x<-2a+1,
∴f(x)在(-∞,-2a+1)遞增,在(-2a+1,-1)遞減,在(-1,+∞)遞增.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(Χ2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,1) | B. | ($\frac{\sqrt{2}}{3}$,1) | C. | ($\frac{\sqrt{3}}{3}$,1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 2π | C. | 3π | D. | $\frac{3π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com