9.計算下列指、對數(shù)式的值
(Ⅰ)$({{{log}_3}4-{{log}_3}32}){log_2}{3^{-1}}$
(Ⅱ)${0.3^0}+{3^{1+{{log}_3}5}}$.

分析 (Ⅰ)由已知條件利用對數(shù)的性質、運算法則、換底公式求解.
(Ⅱ)由已知條件利用指數(shù)、對數(shù)的性質、運算法則求解.

解答 解:(Ⅰ)$({{{log}_3}4-{{log}_3}32}){log_2}{3^{-1}}$=$lo{g}_{3}\frac{4}{32}$×$lo{g}_{2}\frac{1}{3}$=$lo{g}_{3}\frac{1}{8}$×$lo{g}_{2}\frac{1}{3}$=$\frac{lg\frac{1}{8}}{lg3}×\frac{lg\frac{1}{3}}{lg2}$=3.
(Ⅱ)${0.3^0}+{3^{1+{{log}_3}5}}$=1+3×5=16.

點評 本題考查對數(shù)式、指數(shù)式化簡求值,是基礎題,解題時要認真審題,注意對數(shù)、指數(shù)的性質、運算法則、換底公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.是否存在實數(shù)x,使得(x+$\sqrt{3}$i)3=log${\;}_{\sqrt{3}}$$\frac{1}{81}$成立?如果存在,求出x的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知在平面直角坐標系xOy中,角α的終邊在直線y=$\sqrt{2}$x位于第一象限的部分,則sin(α+$\frac{π}{6}$)=( 。
A.$\frac{3\sqrt{2}-\sqrt{3}}{6}$B.$\frac{\sqrt{3}-3\sqrt{2}}{6}$C.$\frac{3\sqrt{2}+\sqrt{3}}{6}$D.-$\frac{\sqrt{3}+3\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知a+b≠0,證明a2+b2-a-b+2ab=0成立的充要條件是a+b=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.復數(shù) $z=\frac{{-2\sqrt{3}i}}{{3+\sqrt{3}i}}$(i是虛數(shù)單位)在復平面內對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.命題“p或q”為真命題( 。
A.命題p為真B.命題q為真
C.命題p和命題q一真一假D.命題p和命題q至少一個為真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.命題P:函數(shù)f(x)=x2-2ax+2在區(qū)間[0,1]上有且只有一個零點;命題Q:y=ax(a>0,a≠1)是R上的增函數(shù),
(1)若f(1)=0,求a的值;
(2)若“P或Q”為真,“P且Q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.冪函數(shù)f(x)的圖象過點$(2,\sqrt{2})$,則$f(\frac{1}{2})$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.計算下列各式的值:
(1)${0.64^{-\frac{1}{2}}}-{(-\frac{1}{8})^0}+{8^{\frac{2}{3}}}+{({\frac{9}{16}})^{\frac{1}{2}}}$
(2)(lg5)2+2lg2-(lg2)2

查看答案和解析>>

同步練習冊答案