分析 根據(jù)河西不等式可直接求解.
解答 解:(1)由柯西不等式:[x2+(2y)2+(3z)2][12+( $\frac{1}{2}$)2+( $\frac{1}{3}$)2]≥(x+$\frac{1}{2}$×2y+$\frac{1}{3}$×3z)2,
∴$\frac{49}{36}$a≥(x+y+z)2(a>0),
∴-$\frac{7}{6}$$\sqrt{a}$≤x+y+z≤$\frac{7}{6}$$\sqrt{a}$
∵x+y+z的最大值是1,
∴$\frac{7}{6}$$\sqrt{a}$=1,得a=$\frac{36}{49}$;
(2)由柯西不等式:[x2+($\sqrt{2}$y)2+($\sqrt{3}$z)2][32+( $\sqrt{2}$)2+( $\frac{\sqrt{3}}{3}$)2]≥(3x+2y+z)2,
∴12≥(3x+2y+z)2,
∴-2$\sqrt{3}$≤3x+2y+z≤2$\sqrt{3}$
∴3x+2y+z的最小值是-2$\sqrt{3}$.
點評 考查了柯西不等式的應(yīng)用,難點是對柯西不等式的配湊.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.504 | B. | 0.994 | C. | 0.496 | D. | 0.06 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{12}$ | $\frac{7π}{12}$ | |||
Asin(ωx+φ) | 0 | 2 | -2 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 25 | C. | 22 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8+5$\sqrt{3}$ | B. | 4+5$\sqrt{3}$ | C. | 12 | D. | 4+5$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在α內(nèi)必存在與a平行的直線,不一定存在與a垂直的直線 | |
B. | 在α內(nèi)不一定存在與a平行的直線,必存在與a垂直的直線 | |
C. | 在α內(nèi)必存在與a平行的直線.必存在與a垂直的直線 | |
D. | 在α內(nèi)不一定存在與a平行的直線.不-定存在與a垂直的直線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com