7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{4}{x}+1,x>0}\\{-x-\frac{4}{x}+1,x<0}\end{array}\right.$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)f(x)在區(qū)間(0,2]和[2,+∞)上的增減性.

分析 (1)利用奇偶性的定義可得結(jié)論;
(2)根據(jù)函數(shù)單調(diào)性定義,可得函數(shù)f(x)在區(qū)間(0,2]上是減函數(shù),在區(qū)間[2,+∞)上是增函數(shù);

解答 解:(1)若x<0,則-x>0,則f(-x)=-x-$\frac{4}{x}$+1=f(x),
若x>0,則-x<0,則f(-x)=x+$\frac{4}{x}$+1=f(x),
綜上f(-x)=f(x),即函數(shù)f(x)是偶函數(shù).
(2)當(dāng)x>0時(shí),$f(x)=x+\frac{4}{x}+1$
設(shè)0<x1<x2,則$f({x_1})-f({x_2})=\frac{{({x_1}-{x_2})({x_1}{x_2}-4)}}{{{x_1}{x_2}}}$
∴當(dāng)0<x1<x2≤2時(shí),f(x1)-f(x2)>0即f(x1)>f(x2
當(dāng)2≤x1<x2時(shí),f(x1)-f(x2)<0即f(x1)<f(x2).
∴函數(shù)f(x)在區(qū)間(0,2]上是減函數(shù),在區(qū)間[2,+∞)上是增函數(shù).

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性與單調(diào)性,利用函數(shù)奇偶性和單調(diào)性的定義是解決本題的關(guān)鍵.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點(diǎn).
(1)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
(2)求平面BCE與平面ACD所成銳二面角的大。
(3)求四面體E-BGC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=$\left\{{\begin{array}{l}{{{({x-a})}^2},x≤0}\\{x+\frac{1}{x}+a,x>0}\end{array}}$在x=0處取得最小值,則a的最大值是( 。
A.4B.1C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.兩直線ρsin(θ+$\frac{π}{4}$)=2015,ρsin(θ-$\frac{π}{4}$)=2016的位置關(guān)系是相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a,b∈R,給出下列判斷:
①若$\frac{1}-\frac{1}{a}=1$,則a-b≤1;
②若a3-b3=1,則a-b≤1;
③若a,b均為正數(shù),且a2-b2=1,則a-b≤1;
④若a,b均為正數(shù),且$\sqrt{a}-\sqrt=1$,則a-b≥1.
則所有正確判斷的序號(hào)是( 。
A.①②B.C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知x,y,z滿足x2+4y2+9z2=a(a>0)
(1)若x+y+z的最大值是1,求a的值;
(2)若x2+2y2+3z2=$\frac{18}{17}$,求3x+2y+z的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,⊙O的半徑OC垂直于直徑AB,M為BO上一點(diǎn),CM的延長(zhǎng)線交⊙O于N,過N點(diǎn)的切線交AB的延長(zhǎng)線于P.
(1)求證:PM2=PB•PA;
(2)若⊙O的半徑為2$\sqrt{3}$,OB=$\sqrt{3}$OM,求MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn).將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于P.
(1)求證:平面PBD⊥平面BFDE;
(2)求二面角P-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某5名學(xué)生的總成績(jī)與數(shù)學(xué)成績(jī)?nèi)绫恚?br />
學(xué)生ABCDE
總成績(jī)(x)482383421364362
數(shù)學(xué)成績(jī)(y)7865716461
(1)畫出散點(diǎn)圖;
(2)求數(shù)學(xué)成績(jī)對(duì)總成績(jī)的回歸方程;
(3)如果一個(gè)學(xué)生的總成績(jī)?yōu)?50分,試預(yù)測(cè)這個(gè)學(xué)生的數(shù)學(xué)成績(jī)(參考數(shù)據(jù):4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760).
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案