11.將直線l1:x-y-3=0,繞它上面一定點(diǎn)(3,0)沿逆時(shí)針方向旋轉(zhuǎn)15°得直線l2,則l2的方程為$\sqrt{3}$x-y-3$\sqrt{3}$=0.

分析 由題意可得直線l的傾斜角,進(jìn)而可得直線l2的傾斜角,可得其斜率,可得直線方程.

解答 解:∵直線l:x-y+3=0的斜率為1,故傾斜角為45°,
∴直線l2的傾斜角為45°+15°=60°,斜率為tan60°=$\sqrt{3}$,
∴直線l2的方程為y-0=$\sqrt{3}$(x-3),
即$\sqrt{3}$x-y-3$\sqrt{3}$=0,
故答案為:$\sqrt{3}$x-y-3$\sqrt{3}$=0.

點(diǎn)評 本題考查直線的夾角,涉及傾斜角和斜率的關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.不等式1≤|2x-1|<2的解集為( 。
A.$({-\frac{1}{2},0})∪[{1,\frac{3}{2}})$B.$({-\frac{1}{2},\frac{3}{2}})$C.$({-\frac{1}{2},0}]∪[{1,\frac{3}{2}})$D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.角α的終邊在第一象限,則$\frac{sin\frac{α}{2}}{|sin\frac{α}{2}|}$+$\frac{cos\frac{α}{2}}{|cos\frac{α}{2}|}$的取值集合為( 。
A.{-2,2}B.{0,2}C.{2}D.{0,-2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=ex(sinx+a)在區(qū)間(0,π)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.[-$\sqrt{2}$,+∞)B.[1,+∞)C.(-∞,-$\sqrt{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的首項(xiàng)a1=2,且an=2an-1-1(n∈N*,N≥2)
(1)求證:數(shù)列{an-1}為等比數(shù)列;并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{n•an-n}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)命題p:?x∈R,都有ax2>-ax-1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y-4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)lg(4a)+lgb=2lg(a-3b),則log3$\frac{a}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}{-x+3,-1≤x≤1}\\{1+lo{g}_{({a}^{2}-1)}(2x),2≤x≤8}\end{array}\right.$的值域是[2,5],則實(shí)數(shù)a的取值是$±\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是定義在(0,+∞)上的函數(shù),f'(x)是f(x)的導(dǎo)函數(shù),且總有f(x)>xf'(x),則不等式f(x)>xf(1)的解集為( 。
A.(-∞,0)B.(0,1)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案