【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x (℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?

附:

【答案】(1);(2)可靠的.

【解析】試題分析:

(1)由題意求得, ,則回歸方程為.

(2)結(jié)合(1)中的結(jié)論利用回歸方程進(jìn)行預(yù)測(cè)可得(1)中所得的線性回歸方程可靠.

(3)

試題解析:

(1) , ,

,

.

(2) 由(1)知:當(dāng)時(shí), ,誤差不超過(guò)顆;當(dāng)時(shí), ,誤差不超過(guò)2顆,故所求得的線性回歸方程是可靠的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從集合中,抽取三個(gè)不同的元素構(gòu)成子集.

(1)求對(duì)任意的滿足的概率;

(2)若成等差數(shù)列,設(shè)其公差為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.

(1)求直方圖中x的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點(diǎn).

(1)求的長(zhǎng);

(2)在以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策. 為了解適齡民眾對(duì)放開(kāi)

生二胎政策的態(tài)度,某市選取70后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了10人,其中打算生二胎

的有4人,不打算生二胎的有6人.

(1)從這10人中隨機(jī)抽取3人,記打算生二胎的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)若以這10人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率作為概率,從該市70后中隨機(jī)抽取3人,記打算生二胎的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了更好地了解設(shè)備改造前后與生產(chǎn)合格品的關(guān)系,隨機(jī)抽取了180件產(chǎn)品進(jìn)行分析,其中設(shè)備改造前的合格品有36件,不合格品有49件,設(shè)備改造后生產(chǎn)的合格品有65件,不合格品有30件.根據(jù)所給數(shù)據(jù):

⑴寫出列聯(lián)表;⑵判斷產(chǎn)品是否合格與設(shè)備改造是否有關(guān),說(shuō)明理由.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過(guò)原點(diǎn)且關(guān)于軸對(duì)稱的兩條直線分別交曲線、、,且點(diǎn)在第一象限,當(dāng)四邊形的周長(zhǎng)最大時(shí),求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)處取得極值,求實(shí)數(shù)的值;

(2)若函數(shù))在區(qū)間上為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)若當(dāng)時(shí),方程有實(shí)數(shù)根,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案